
Application
Performance
Management
in a Containerized World

Achieving visibility in
orchestrated environments

Application Performance Management in a Containerized World

Explaining Container Adoption

What has driven the meteoric rise of containers?

Two words - Agility and Speed. Containers have

become so popular so quickly because they enable

organizations to achieve a level of agility that was

simply not possible using traditional virtualization

and software deployment technology. And this

agility leads to development speed, the ability to

rapidly build and deploy new business services.

Containerized applications can scale incredibly

quickly. Container environments make it easy for

software delivery teams to switch seamlessly

between different development frameworks.

Containers provide ideal building blocks for

constructing continuous delivery pipelines, as

well as deploying modular, flexible microservices

applications. Containerized environments are

also much easier to duplicate, creating tighter

parity between development and production,

enabling developers and QA teams to work in

an environment similar to the environment

running the production applications.

To say that containers have revolutionized software

delivery and deployment is an understatement. In a

few short years, container platforms like Docker have

evolved from a novel, experimental technology to a

core part of the infrastructure of organizations large

and small, across a wide range of industries.

Before Docker’s release in 2013, few software engineers

or systems administrators used containers in a serious

way, apart from small numbers of followers of

platforms like OpenVZ and LXC. That quickly changed;

by early 2016, studies of container adoption concluded

that “Docker spreads like wildfire.” Today, containers

are an essential component of the technology stacks

at companies as diverse as General Electric and Oxford

University Press.

Perhaps no previous technological watershed — not the

advent of virtual machines, not the open source

revolution, not even the rise of Java — has matched the

pace and passion with which containers have revamped

the way organizations produce and deploy applications.

Achieving visibility in

orchestrated environments.

• Explaining Container Adoption

• The Container Monitoring Challenge

2

https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-state-cloud-survey
https://www.docker.com/customers/ge-uses-docker-enable-self-service-their-developers
https://www.docker.com/customers/oxford-university-press-translates-internet-docker-and-docker-compose
https://www.docker.com/customers/oxford-university-press-translates-internet-docker-and-docker-compose

Application Performance Management in a Containerized World

Visualizing how highly distributed applications are
structured and operating is challenging.

uber.com/blog

The Container
Monitoring Challenge

Yet with the revolutionary

advantages of containers

comes a new type of challenge.

Application monitoring,

visibility and performance

tuning within containerized

environments are much more

challenging than they were

when deploying applications

using virtual machines or

bare-metal servers. This is

because containerized

environments are composed of

many components — an

orchestrator, registry, runtime

and more — whereas traditional

environments were less

complex.

For this reason, organizations

that fail to overhaul their

approach to monitoring

when they adopt containers

risk shooting themselves

in the foot.

If you attempt to monitor your

containerized applications and

environments in the same way

that you monitor traditional

applications, you undercut the

core advantages of adopting

containers in the first place.

Traditional monitoring tools

can not keep up with the speed

of containerized operations

taking too much continuous

manual effort to derive

understanding from the tools.

Fortunately, achieving effective

monitoring and visibility in a

containerized world is a

challenge that can be solved.

As this eBook explains, however,

meeting the challenge requires

a fundamentally new approach

to monitoring.

Below, we explain why monitoring within a containerized

environment is so difficult, the mistakes organizations typically

make when trying to address this challenge and how to develop

an effective approach to maintaining complete visibility and

agility after making the transition to containers.

3

Application Performance Management in a Containerized World

The Visibility Challenge in
Containerized Environments

To understand how to develop an effective approach to container

monitoring, you must first understand why maintaining visibility and

optimizing application performance within containerized environments

are uniquely challenging. The reasons container monitoring is so

difficult (and not possible to effectively achieve with monitoring tools

designed for the pre-container era) include the following:

The Visibility Challenge

in Containerized

Environments

• Lack of built-in monitoring

• Container orchestrators are not

performance monitoring tools

• Traditional monitoring tools don’t

support distributed microservices

environments

• Containers host a wide variety of

workloads

• Containers are dynamic and

unpredictable

• Containerized environments can be

built using diverse technologies

and languages

Lack of built-in monitoring

Container platforms include only basic

monitoring functionality. For example, the

Docker stats command provides a limited

amount of performance information about

running containers, but on its own, the stats

tool is insufficient for monitoring large-scale

production environments.

The lack of built-in monitoring beyond basic

data sets containers apart from other app

technologies; and in an environment that has

greater monitoring needs, due to the speed and

frequency of application updates. And while

operating systems provide significant data

about system performance, they don’t include

application-level data.

4

Application Performance Management in a Containerized World

Virtual machine platforms like VMware include

relatively sophisticated monitoring tools, even

if third-party add-ons are sometimes useful.

With containers, however, it is much more

difficult to collect sufficient monitoring

and performance information from the

container, itself.

Container orchestrators
are not performance
monitoring tools

Container orchestrators have recently

gained momentum to assist organizations in

organizing, provisioning and managing the

deployment of their production containerized

applications. If you run containers in

production, you almost certainly use an

orchestrator, such as Kubernetes, DC/OS,

Nomad or Docker Swarm, to provision

your environment.

Orchestrators are not designed for sophisticated

monitoring, and their focus on container and

host resources prevents them from delivering a

reasonable understanding of the performance

and quality of APIs, microservices, middleware

and applications.

Orchestrators also fail to provide sufficient

monitoring functionality inside hybrid

environments that amalgamate containers with

other types of infrastructure. This is because

container orchestrators can manage only the

objects that they are aware of — which means

containers. In a hybrid environment, container

orchestrators cannot help to monitor resource

usage of these other resources. This creates a

second major monitoring gap for distributed

applications. And that leaves a large part of your

environment prone to performance problems.

5

While orchestrators are excellent provisioning tools, and are capable of finding

and restarting failed containers in some situations, orchestrators should not be

confused with performance monitoring tools.

Application Performance Management in a Containerized World

Traditional monitoring tools don’t
support distributed microservices
environments

Containerized environments tend to be

dynamic and distributed. They are composed of

services that are hosted on clusters of servers.

Also, containerized apps usually employ a

microservice architecture, where multiple

independent services combine to create

a complete application. The requests

between those services accomplish the

business processing.

Traditional infrastructure and application

monitoring tools struggle to visualize and

understand distributed microservice

environments. They are designed to handle

monolithic applications that are mapped to

static individual servers, and they focus on

providing visibility at the language level. These

traditional monitoring approaches break down

when you need to support microservices

distributed across a large cluster of servers

(composed of multiple languages, many

middleware components, and multiple

database systems).

Orchestrated applications tend to be highly distributed and “dis”
integrated. This ‘Juju Charms’ illustration shows flow patterns of
service requests between microservices deployed via Kubernetes.

6

Application Performance Management in a Containerized World

There is no single type of

workload associated with

containers. In some cases, they

are used to deploy monolithic

applications, like an Apache HTTP

server. Some containers host

Java virtual machines. Others

host databases, which makes

monitoring even more

complicated. Why? Persistent

data storage is typically

outsourced on permanent

servers, not hosted inside

containers, creating a hybrid

environment (remember the

“Hybrid” problems?).

From a monitoring perspective,

the multiplicity of different

workloads that might run inside

a containerized environment is

challenging because your

monitoring tools must support

an unpredictable set of

technologies, architectures

and configurations.

This workload variability makes

it difficult to configure traditional

monitoring tools to handle

containers because every

container is different, and it is

hard to determine which

thresholds to set in advance for

each one. In addition, monitoring

tools need to be automated

because configuring and

enforcing monitoring policies

manually for unpredictable types

of workloads is not feasible.

Every container is different,

making it difficult (if not

impossible) to determine which

thresholds to set in advance

for each technology instance in

each container. The variable

workloads also drive a need

for monitoring automation.

Configuring and manually

enforcing monitoring policies

for dynamic unpredictable

workloads just isn’t feasible.

By design, containerized

environments are always in flux.

Individual containers spin up and

down rapidly. A container

sometimes lives only a few

seconds before it is shut down.

Containers’ ability to start and

stop quickly is key to achieving

the agility that containers offer.

Traditional infrastructure and

application monitoring tools

cannot support the rapid pace

of change within containerized

environments. For example, if

a container spins up an NGINX

web server instance that

handles 150 requests during a

period of five minutes, and the

container then shuts down due

to a performance problem, a

traditional monitoring tool won’t

be able to include the server in

its list of running systems - and

the traditional APM tool will not

be able to trace the problem

because the container no longer

exists. A modern APM tool,

however, can look back in time

and trace containers even after

they cease to exist.

7

Containers host a wide variety of workloads Containers are dynamic and unpredictable

Containerized
environments can be
built using diverse
technologies and
languages

There is no single way to construct

a containerized software

environment. Organizations can

choose from a range of different

orchestrators (like Kubernetes,

Swarm and Marathon), registries

(like Docker Hub, Quay and VMware

Harbor), and even runtimes

(such as runC and Rkt).

It’s also common in a containerized

environment to run multiple

microservices, each written using a

different type of programming

language. Traditional monitoring

tools that support only specific

languages will not work well in

such an environment.

Application Performance Management in a Containerized World

The large diversity of technology

also creates expertise issues in Ops

and/or DevOps. Rather than a single

middleware system running Java,

Ruby or .NET, containerized

applications can run several

different languages, multiple

database servers, a combination

of messaging and a host of other

technology components such

as security, storage or search.

The idea of a technology-specific

subject expert drilling down into

a technology-specific monitoring

tool is gone.

Typical spread of
technologies deployed via
container orchestration
into a single server with
varied workloads and
priorities. Here we can see
an Apache server, a JVM,
an NGINX proxy, a Postgres
SQL database and a random
process each running as a
container within a host.

8

Why Container
Visibility Matters

If there’s anything IT has learned over the years of

platform updates, it’s that maintaining visibility is

essential in any type of environment. In fact, It’s the

only way to keep applications running smoothly

and to optimize resource usage and cost.
The Visibility Challenge

in Containerized

Environments

• Inability to pinpoint the root

of a problem

• Poor performance metrics

• Hindered Scalability

In a containerized environment, visibility and

monitoring are especially important. They are

crucial not only for maintaining application

health, but also for maximizing agility and

efficiency — and thereby obtaining full return

on the investment you make in containerized

infrastructure.

A lack of visibility in a containerized

environment leaves you blind in ways that do

not occur within traditional environments. This

blindness creates real technical and business

challenges, some of which are outlined below.

Application Performance Management in a Containerized World

9

Inability to pinpoint
the root of a problem

Without visibility into your

containerized application, you

don’t know whether the cause

of an incident lies on the host

server, with the container

runtime, poorly operating

middleware running in a

container, within application

code inside a container, or

somewhere else.

Traditional monitoring tools that

are unable to understand the

context of a containerized

environment will not help you

solve this problem. Nor can you

depend on your team to be able

to troubleshoot issues in a

containerized environment

manually because production

container environments are too

complex and large to manage

without automation. Even small

applications end up with

hundreds of containerized

software parts.

Poor performance
metrics

Without the proper data from

inside containers, you can’t

effectively determine that your

containerized apps are meeting

your service quality goals.

This means that you risk shooting

yourself in the foot in the sense

that the major reason for

adopting containers is to make

application deployments more

efficient and agile. Without

visibility, you have no way of

measuring or maximizing

efficiency and agility.

For example, you can’t determine

whether a new microservice or

application deployment is

meeting latency goals without

the proper level of data.

Traditional monitoring tools

cannot track latency at the

data granularity required to

measure the performance of

a containerized application

effectively.

Application Performance Management in a Containerized World

10

Without this information, you

have no way of knowing whether

the time and money invested in

a new deployment is being paid

back to your team and business.

Lack of visibliity inside
containers hinders
troubleshooting in Ops.

Application Performance Management in a Containerized World

Hindered Scalability

Scalability, which means the

ability to increase or decrease

the size or number of instances

of an application or microservice

in response to fluctuations in

demand, is a key benefit of

containers. Containers enable

easy scalability because they

can be started, stopped or

migrated in just seconds,

compared to minutes for virtual

machines or days for bare-metal

servers.

Yet while containers make the

HOW of scaling easy, intelligent

analysis of accurate monitoring

data is the only way to know

WHEN to scale. You need to know

when an increase in demand

for your application merits the

scaling up of your deployments

(meaning rapidly allocating new

containers and hosts). Just as

important is determining when

demand has decreased and you

Containers represent the

modern form of virtualization,

and misconfigured container

environments will result in the

same problems as virtual server

misconfiguration. Insufficient

allocation of resources to

containers will result in

application performance and

scalability issues, while excess

allocation leads to wasted

money and resources. Without

precise realtime visibility into

the details of the containers,

this will not be possible.

can scale down in order to avoid

paying for hosting resources that

are under-utilized.

11

If you’re familiar

with virtual machines,

you know how

important scalability

considerations are.

Application Performance Management in a Containerized World

Antipatterns: How Not to Solve the
Container Monitoring Challenge

Faced with the monitoring and visibility challenges described above, organizations that have

migrated to containers are sometimes inclined toward solutions that appear to resolve the

problem, but in reality constrain their agility and negate the advantages of containers.

Antipatterns: How Not to

Solve the Container

Monitoring Challenge

• Trusting orchestrators to handle

service quality for them

• Limiting Technology Choices

• Avoiding monitoring agents

• Using traditional infrastructure

and application monitoring tools

• Keeping applications monolithic

Following is a collection of common examples that don’t solve the problems - they mask them.

Limiting Technology
Choices

In some cases, modifying the applications that

run inside containers can make monitoring easier.

For instance, you might decide to write all of your

application code in a language that you know

your legacy monitoring tool supports. While

strategies like these will often help to simplify

monitoring, they defeat the purpose of container

adoption because they constrain your agility.

Trusting orchestrators to handle
service quality

As discussed previously, orchestrators are not

monitoring tools. You can and should use an

orchestrator to help provision your containerized

environment, but you need a separate monitoring

solution because an orchestrator cannot, and

is not intended to, provide the deep visibility

required to guarantee service quality and

application performance.

12

Application Performance Management in a Containerized World

If you are forced to use only certain languages

because your monitoring tools don’t work

effectively otherwise, you rob yourself of

the flexibility that containers and

microservices offer.

Avoiding monitoring agents

Avoiding monitoring tools that require agents

to run inside containers can also help to make

monitoring easier, because these agents are

often difficult to deploy inside a containerized

application. Programmatic data sources that

generate monitoring information from within

an application are easier to deploy. Here again,

however, avoiding a certain type of technology

in order to enable monitoring negates many of

the benefits that containers offer.

You should enjoy the flexibility

to use either agent-based

monitoring or programmatic

data sources depending

on your needs or preference.

13

Keeping applications
monolithic

Maintaining a monolithic architecture instead

of migrating or refactoring your applications to

run as microservices is another way to simplify

monitoring. However, this strategy also undercuts

one of the main benefits of containers, which

is their ability to support high speed agile

development processes.

Application Performance Management in a Containerized World

Using traditional
infrastructure and application
monitoring tools

Container-based applications

simply have too many differences

in the way they are architected,

built, deployed and executed.

Traditional monitoring tools were designed

before the high speed agile development

methodology and containers existed. They

were not designed to be able to keep up with

the speed of containerized operations taking

too much continuous manual effort to derive

understanding from the tools.

These antipatterns
represent the wrong
way to think about
how to solve the
container visibility
challenge.

The Right Solution:
Must-have Capabilities to Effectively
Monitor Dynamic, Orchestrated Applications

As detailed above, the world of applications running

in containerized environments is quite dynamic.

DevOps needs precise realtime visibility, situational

awareness and understanding into how applications

are performing aligned with suggestions and advice

on how to optimize the complex technical structures

found in today’s systems.

Application Performance Management in a Containerized World

With containers (and the architectures they enable), there’s simply too many

differences and roadblocks to use conventional monitoring tools. To ensure proper

service levels are continuously met, monitoring requires a new approach,

built from the ground up to deal with the unique characteristics

of these dynamic environments.

14

• Handle the Dynamism

By Automating Everything

• Be Container Aware

• Automatically Discover, Map and Visualize

the Full App Tech Stack

• High Data Fidelity, Real-time Analysis

• Capture Every Request with a Distributed Trace

• Assist With Root Cause Understanding

of Microservice Issues

• Stop Relying on Humans to Configure Health

Rules

The Right Solution: Implementing

an Effective Approach to Container

Monitoring

Here are some attributes to look for:

Why would you settle for

a monitoring tool that was

not automatic?

Handle the Dynamism By
Automating Everything

When so much of your technical stack is

changing so often, your team does not have

the time or knowledge needed to manually

configure a monitoring tool. A modern solution

must fundamentally be automatic. In other

words, with zero configuration (intervention

by a human), the tool must be able to visualize

the situation and monitor your application’s

performance.

Let’s think of this another way. Continuous

Integration and Delivery processes are about

streamlining and automating the deployment

of new services. Why would you settle for

a monitoring tool that was not automatic?

Be Container Aware

Your monitoring tools must be able to

automatically look inside containers and

understand the context of the environment

in which they are running. They must also be

designed to accommodate the rapidly changing

state of containerized environments.

Automatically Discover, Map and
Visualize the Full App Tech Stack

In dynamic environments, understanding the

structure and dependencies all your technical

components over time is needed to analyze

efficiency and performance. A modern solution

must of discovers every application component

and map the interactions & dependencies between

them. The map must be automatically and

continuously updated with dependency and

visualize service quality information

as changes occur.

Application Performance Management in a Containerized World

15

High Data Fidelity,
Real-time Analysis

Microservices and containers are
short-lived and dynamic. A modern
solution should be able to capture
and analyze short spikes allowing
operators to understand whether
a code rollout caused an issue.
Analysis must happen in real-time
(under 5 seconds). Likewise, metric
data collected must be very
accurate and fine grained. 1 minute
granularity is no longer sufficient.
Look for 1 second granularity.

Capture a Distributed
Trace with Every Request

To understand highly distributed,

constantly changing applications,

every request between every

service and microservice must be

monitored. A lightweight “Trace”

which captures performance and

flow detail, with dependency

information about what

middleware and hosts were

involved for every segment of the

request is preferred. The ability to

drill down into code performance

detail will also empower developers.

16

Assist With Root Cause Understanding
of Microservice Issues

Let’s not forget, containerized environments are delivering
applications which must perform to the expectations of the
business. No matter how complex your environment, the
Devops team must identify and resolve performance issues
as fast as possible. Look for a solution that can automatically
point you to where and why distributed applications
break down.

Application Performance Management in a Containerized World

Stop Relying on Humans
to Configure Health Rules

Across application development

and monitoring lifecycles, the more

that humans are required to do (i.e.,

install, configure, customize, reverse

engineer, etc.), the less complete

the monitoring coverage will be, the

weaker responses to changes will

be, and the more likely a new service

will be missed.

As element counts grow into the

hundreds or thousands, humans

cannot practically manage

application performance on their

own. The latest buzzword in today’s

IT tools is Machine Learning, but

Machine Learning is actually not

enough to eliminate the human drag.

It’s important that your tool has been elevated to a more

complete level of Artifical Intelligence assisted functionality,

machine learning, advanced statistical analysis and curated

knowledge-bases — all of which continue to learn from

real-world experiences to automate even more of the solution.

Look for tools that automatically determine which

Key Performance Indicators (KPIs) to collect, when measurements

indicate service incidents, and determine the likely root cause

of problems – all without human interaction.

Conclusion

Containers have become indispensable for facilitating the acceleration

of development velocity, but with this speed comes visibility and

management challenges. Traditional management tools struggle with

these challenges, making it more difficult for IT Operations to match

the higher velocity of agile development teams. Making matters worse,

the sheer volume of transactions and components make good

monitoring even more essential to your success.

Application Performance Management in a Containerized World

Tackling this challenge requires visibility into the containers, as well as the

interactions between them. Specifically, continuous automatic visibility

(with understanding) into all technical layers; the hosts, the containers,

the middleware and running microservices.

Instana’s monitoring solution embraces these new requirements.

Learn more by downloading

our complimentary eBook:
The 6 Pillars of Managing Modern Dynamic Applications

17

https://www.instana.com/library/six-pillars-modern-dynamic-apm/

Service Quality Management in the Microservices Age

18

Stan
Your AI-Powered
DevOps Assistant

Instana provides the only APM solution that

automatically discovers services, deploys agents

and monitors component health for microservice

and containerized applications.

Built to handle the demands of agile

organizations, Instana continuously aligns

application maps with any changes, detects

behavioral anomalies, and automatically

provides a health score for each technology

component. Organizations benefit from

real-time impact analysis, improved service

quality, and optimized workflows that keep

applications healthy.

The solution notifies DevOps teams when

service quality is at risk, providing precise

information identifying the triggering event

and potential root cause.

About
Instana

We
invite
you
… to get a sense of just how
much our solution can do.
And if you’re ready, give
Instana a try today.

Instana Container Solution

https://www.instana.com/
https://www.instana.com/for-containers/
http://bit.ly/2qKfNri
https://docs.instana.com
http://bit.ly/2qKfNri

	Try Button 2:
	Doc Text Button 2:
	Try Text Button 2:

