
KubeVirt: How to Run
VMs on Kubernetes

Table of Contents

What is KubeVirt?

What is KubeVirt? Why Use KubeVirt?

KubeVirt Compute Concepts

KubeVirt Boot Options

KubeVirt Containerized Data Importer (CDI)

KubeVirt-Storage

KubeVirt - Networking

KubeVirt Architecture

Networking and the VMI

Exploring Some of the Controllers

The Virt-Handler Daemonset

Learning More

Appendix

3

4

5

6

7

8

10

11

13

14

15

16

16

KubeVirt: How to Run VMs on Kubernetes 3

In the world of DevOps and software development,
one of the challenges is bridging the gap between your
containerized environments and your virtual machine
environment.

While it’s not impossible, configuring the connection between your containers and your other services isn’t
trivial either. Fortunately, you can use KubeVirt to bring your virtual machines into your container environ-
ment, which opens a whole new world of possibility and ease. In this guide, we’re going to introduce you to
a new solution from Platform9 that allows you to deploy virtual machines (VMs) on your Kubernetes cluster.
With VMs, you can now deploy non-containerized applications and run them alongside your cloud-native
applications, on a single Kubernetes cluster.

What is KubeVirt?
KubeVirt is an open-source project that allows you to create virtual machines within a Kubernetes cluster.
The project was initiated by RedHat in 2016. It has since been open-sourced and was inducted into the
Cloud Native Computing Foundation’s (CNCF) Sandbox Project, on September 9th 2019. KubeVirt is a col-
lection of custom resource definitions (CRDs) and controllers. With KubeVirt, you can use the Kubernetes
platform to run and manage application containers and VMs side-by-side. Under the surface, KubeVirt lever-
ages QEMU and KVM to power the virtual machines. An overwhelming advantage of this approach is that
all the tools and utilities you use to manage and maintain your cluster, apply to the KubeVirt VMs as well. You
can use the native Kubernetes functions to set up and control:

• Scheduling

• Storage

• Networking

• Monitoring

• Orchestration

Let’s start by looking at some examples of challenges you can solve with KubeVirt. Once we’ve done that,
we’ll look at KubeVirt itself in more detail and see how it fits into the Kubernetes ecosystem. Finally, we’ll
walk through the steps to get up and running with a KubeVirt deployment of your own on your Kubernetes
cluster.

KubeVirt: How to Run VMs on Kubernetes 4

Why Use KubeVirt?
The concept of being able to run VMs inside of your
Kubernetes platform is intriguing, but the power
comes from the different business problems it can
solve. Let’s look at some of the business problems
KubeVirt solves or at least simplifies.

Unified Orchestration Platform

Running both your VMs and containerized
applications within a Kubernetes cluster
simplifies your orchestration needs. Instead of
configuring a CI/CD pipeline for your containers
and one for VMs, you can combine them and
manage them all from a single tool, such as
Helm. The configuration of administrative tooling,
networking, and monitoring are also brought in
under the umbrella for both application types,
dramatically simplifying your systems.

Application Modernization

Anyone who has attempted an application
migration from a monolithic architecture to
micro-services knows that it can be especially
challenging. A big part of that challenge is
facilitating interoperability between the legacy
application and new micro-services as they are
created and deployed. Deploying all of the players
– both legacy and new – to the same platform
using both VMs and containers, significantly
reduces the number of hurdles.

Virtual Network Function
Modernization

Organizations that handle intensive I/O
workloads might be using Network Functions
Virtualization (NFV) to optimize their systems for
that work. These systems make use of custom
kernel modules, network drivers, and other
characteristics that prevent their migration to a
containerized architecture.

Moving your NFV workloads into VMs with KubeVirt
allows you to move to Kubernetes, and host your
NFV VMs alongside other already containerized
applications.

Kubernetes on Bare Metal
Kubernetes

A recent trend in the quest for more performant
Kubernetes has been to deploy Kubernetes
on a bare-metal server. If you’re not familiar
with the concept of a bare-metal server, it’s a
deployment directly on a host machine, without
the constraints of a virtual machine. It’s a bit like
the original concept of a server, before the advent
of virtualization. This approach allows such
advantages as taking advantage of hardware
accelerators and GPU processing power.

KubeVirt: How to Run VMs on Kubernetes 5

KubeVirt Compute
Concepts
Now that we have explored potential use cases
for KubeVirt, let’s take a deep dive into more of the
details and concepts in use with KubeVirt. We’ll
start by exploring some of the concepts related to
compute functionality within KubeVirt.

Virtual Machine (VM)

When we talk about a VM with KubeVirt, we’re
referring to a custom Kubernetes object. The CRD
for the object contains the specification for the
Virtual Machine Instance, which we’ll talk about
next. The VM serves as an abstraction layer about
your VM instances that can communicate the
status of running/not running and other labels.
The VM object is not associated with a specific
pod or process.

Virtual Machine Instance (VMI)

The VMI is also a custom object. It is an object
that represents a single running virtual machine
instance and consists of two parts. The first part of
it holds information to make scheduling decisions.
The second part holds information about the
virtual machine application binary interface.

VMI Preset

The VMI Preset is similar to the idea of flavors
or instance types in other VM technologies.
In AWS, the EC2 instance type prescribes the
configuration for VMs of that type. The VMI Preset
contains specific configurations for:

• Memory

• CPU

• Storage

• Networking

True to its nature as a Kubernetes component, you
assign a label to the VMI Preset, and if the label
on the VMI matches, then the VMI inherits the
configuration of the VMI Preset. Where it differs
from the traditional idea of a VM Instance Type
or flavor, is that the VMI can override any of those
settings. When Kubernetes creates a new VMI, the
related VMI Preset provides the default settings
for the instance. Any settings that have an override
value are then updated to that value before fully
provisioning the VMI.

KubeVirt: How to Run VMs on Kubernetes 6

KubeVirt Boot Options
With our understanding of the nature of the VM and VMIs with the Kubernetes ecosystem, let’s look at the
different options you can choose to define the state of your VM as it boots up.

Ephemeral Disk Boot Option

Booting up a VMI with an ephemeral disk is useful in any scenario where disk persistence is not desired or
essential. KubeVirt dynamically generates the ephemeral images associated with a VM when the VM starts.
The storage shares the lifecycle with the VM, meaning that it is lost when the VM is terminated or restarted.

Persistent Disk Boot Option

If the persistence of state after the termination or rebooting of your VM is essential for your operations, then
the Persistent Disk option is the option to select. In this case, the VM attaches a persistent data volume.

KubeVirt: How to Run VMs on Kubernetes 7

KubeVirt Containerized Data Importer
(CDI)

The question you might now be asking is:

Allow us to introduce you to KubeVirt’s Containerized Data Importer (CDI). KubeVirt CDI is a utility designed
to import, upload, and clone Virtual Machine images for use with KubeVirt.

KubeVirt CDI is a CRD that sits on top of the Persistent Volume Claim (PVC) and enables the process of
importing an external virtual machine image, and then storing it within the cluster storage. This stored image
then becomes a Golden Image, which KubeVirt can reference when provisioning a new VM, or additional
VMIs, based on that image. CDI can accept QCOW2 and RAW image formats.

If you would like to learn more about KubeVirt’s CDI utility, you can go to Containerized Data Importer.
KubeVirt CDI is a second open-source project under the KubeVirt banner, which can be accessed and
downloaded from the Containerized Data Importer GitHub repository. You can also reference the image
below, which illustrates a typical use case for CDI with a Kubernetes cluster.

 “How do I load compatible images for my KubeVirt VMs?”

Fig. 1 Common Use Case for CDI to Import and Use a New Image (Source: Beyond Containers)

https://kubevirt.io/2018/containerized-data-importer.html
https://github.com/kubevirt/containerized-data-importer
https://platform9.com/blog/kubernetes-kubevirt-beyond-containers-back-to-vms/

KubeVirt: How to Run VMs on Kubernetes 8

KubeVirt Storage
KubeVirt supports the following storage options:

CloudInit NoCloud and
ConfigDrive

KubeVirt supports both CloudInit NoCloud and
CloudInit Config Drive. CloudInit NoCloud and
ConfigDrive are provisioned within the startup
scripts of the VMI. The script defines a disk and
a volume for the NoCloud and ConfigDrive data
source. CloudInit NoCloud helps to set up storage
devices to configure SSH access keys and many
other aspects of a system. (Creating Virtual
Machines | cloud-init)

emptyDisks

An emptyDisk is an initially empty disk, as the
name implies. You mount the emptyDisk on the
same or different path in each container. This
approach is similar to an EmptyDir in Kubernetes.
An emptyDisk exists for the lifetime of the
Kubernetes pod in which it resides.

When an emptyDisk is attached to a virtual
machine, an extra sparse qcow2 disk is allocated
and lives as long as the virtual machine. It can
survive guest side virtual re-boots but not virtual
machines re-creation.

hostDisks

The hostDisk option has two usage types,
DiskOrCreate and Disk. By using hostDisks, you
can create or use a disk image located somewhere

on a node. The difference between the two types
is that DiskOrCreate creates an image if a disk
image does not exist at a given location, while
Disk type states that a disk image must exist at a
given location.

containerDisks

Formerly known as registryDisk, it is an
ephemeral storage device that can store and
distribute VM disks in the container image
registry. You can assign the disk to any number
of active VirtualMachineInstances in the VM’s
disk section of the VirtualMachinesInstance spec.
containerDisks are great for users that want to
replicate a large number of VM workloads that
don’t require persistent data, while not so great for
any workload that requires persistent root disks
across VM restarts. (containerDisk)

dataVolume

KubeVirt also supports dataVolume, which is a
method to automate importing virtual machine
disks onto PVCs. DataVolumes can be defined in
the Virtual Machine specification, directly adding
the DataVolumes to the dataVolumeTemplates
list. (Disk and Volumes)

https://kubevirt.io/user-guide/#/creation/cloud-init
https://kubevirt.io/user-guide/#/creation/cloud-init
https://kubevirt.io/user-guide/#/creation/disks-and-volumes?id=containerdisk
https://kubevirt.io/user-guide/#/creation/disks-and-volumes?id=datavolume

KubeVirt: How to Run VMs on Kubernetes 9

Kubernetes Primitives

Finally, KubeVirt supports Kubernetes Primitives,
as well as Live Migration. Kubernetes building
blocks such as ConfigMap, Secret, and
ServiceAccount are all available in KubeVirt.

One thing to note is that these storage changes
generally require a restart of the Virtual Machine.
Restarting the VM allows it to recreate the
VirtualMachineInstance object and, after that,
recognize the attached store options.

Live Migration

Live Migration is the process wherein a running
Virtual Machines Instance moves to another
compute node while the guest workload
continues to run and remains accessible. You can
successfully do a live migration in KubeVirt when
you have configured the storage and networking
correctly.

Live Migration must be first enabled in the feature-
gates to be supported. The feature-gates field
resides in the kubevirt-config config map, and
you can add Live Migration to it after you expand
that field. (Installation & Administration | Live
Migration)

Some situations you may encounter with Live
Migration are:

• VMs using a PVC must have a shared
ReadWriteMany access mode to be Live
Migrated.

• VMs not using persistent storage, such
as containerDisks may be Live Migrated.

• Live Migration is not allowed when the
VM’s pod network uses a bridge interface
(See Fig. 2 below). Note: The default net-
work interface type is a bridge interface.

Other interfaces, such as those granted by Mul-
tus (see KubeVirt - Networking below) may use a
bridge interface for the purposes of live migration.

spec:
 networks:
 - name: network1
 pod: {} # pod network

https://kubevirt.io/user-guide/#/installation/live-migration?id=live-migration
https://kubevirt.io/user-guide/#/installation/live-migration?id=live-migration

KubeVirt: How to Run VMs on Kubernetes 10

KubeVirt Networking
By default, the VMs you create with KubeVirt use the native networking already configured in the pod.
Typically, this means that the bridge option is selected, and your VM has the IP address of the pod. This
approach makes interoperability possible. The VM can integrate with different cases like sidecar containers
and pod masquerading. When using pod masquerading, there is a defined CIDR chosen by yourself for
which VM’s are not assigned a private IP, and instead use NAT behind the pod IP.

Multus is a secondary network that uses Multus-CNI. Multus allows a user to attach multiple network inter-
faces to pods in Kubernetes. If you use Multus as your network, you need to ensure that you have installed
Multus across your cluster and that you have created a NetworkAttachmentDefinition CRD. (Creating Virtual
Machines | Interfaces and Networks)

While Multus has become the de-facto standard, another option you have is Genie. Genie is similar to Multus
in that it assumes you have installed Genie across your cluster and that it is a secondary network. Genie uses
CNI-Genie, which enables Kubernetes to connect to the choice CNI plugins installed on a host, including
CNI plugins like SR-IOV. At the time of writing, the CNI-Genie project hasn’t had updates made to it in over
a year.

https://github.com/intel/multus-cni
https://kubevirt.io/user-guide/#/creation/interfaces-and-networks?id=interfaces-and-networks
https://kubevirt.io/user-guide/#/creation/interfaces-and-networks?id=interfaces-and-networks
https://github.com/huawei-cloudnative/CNI-Genie

KubeVirt: How to Run VMs on Kubernetes 11

KubeVirt Architecture

When you use KubeVirt to create a new VM, the first step that happens is the creation of a new pod. Each VM
resides inside its pod, and within that pod you have at least a Volume Container and a Computer Container.

Fig. 3 Common Use Case for CDI to Import and Use a New Image (Source: Beyond Containers)

Volume Container

The Volume Container examines the embedded Virtual Machine Image inside the docker image. Once it has
identified the image, it extracts it and then passes it on to the compute container. Essentially, the Volume
Container is responsible for locating and passing the virtual machine disk image to the QEMU process and
other Containers such as Sidecars, and Infra containers.

Compute Container

The Compute Container is what runs the actual VM. Within the Compute Container, there is the Virt-Launcher,
Libvirt and finally the VM itself. The Virt-launcher is responsible for interacting with Libvirt. It launches Libvirt
as a child process, and it is what Virt-Launcher uses to manage the life of the virtual machine.

https://platform9.com/blog/kubernetes-kubevirt-beyond-containers-back-to-vms/

KubeVirt: How to Run VMs on Kubernetes 12

Libvirtd

Libvirtd is the tool that runs the virtual machine using QEMU and KVM, where it is available. It is the standard
component used to spawn virtual machines on Linux and provide the features that the user has requested.
These features include memory limits, CPU limits, and specifications for any devices connected to the vir-
tual machine.

Libvirtd can also receive requests from other components to stop and start the VM. Unlike containers that
start by default, VMs can be dormant and may remain in that state until they start. Libvirtd provides this ca-
pability.

The continued development of KubeVirt will enable more features in the future. Some of these features may
include support to hot plug or unplug devices, memory, and disk.

KubeVirt: How to Run VMs on Kubernetes 13

Networking and the VMI

KubeVirt assigns the Pod IP address to the VM running inside the Virt-Launcher POD by default. When the
system provisions a new pod, the default networking setup begins with the creation of a veth pair. The veth
pair connects Container Network Interface (CNI) to the Compute Container, which contains the VMI. If you
log into the container and then query for the ethernet devices like using “ip a”, you’ll see this as eth0. The
virt-launcher then creates a bridge, creates a tap device, and takes the IP address that is assigned to the
container and then assigns it to the virtual machine that is running inside the container.

This specific approach results in the IP address of the pod being given to the enclosed VM. Once this setup
is complete, the VM functions just like any other container within the cluster. The cluster treats the VM as just
another workload.

As stated above, this is the default setup, and you can replace it with a different networking strategy, such
as NAT or masquerading.

Fig. 4 Default Network Configuration Between CNI and the VM (Source: KubeVirt Networking Diagram)

KubeVirt: How to Run VMs on Kubernetes 14

Exploring Some of the Controllers

Each of the objects involved in supporting the VM has an associated controller. Given that KubeVirt as a proj-
ect is still in its infancy, it is reasonable to expect additional objects and functionality to become available
over time. The idea and concept of VM Group is an example of one of the ideas currently being discussed.

Here is a quick overview of some of the objects and controllers involved in supporting a KubeVirt VM. Cur-
rently, you can find Controllers for each of the following objects:

• VirtualMachine

• VirtualMachineInstance

• VirtualMachineInstanceReplicaSet

• Node

• Migration

The VirtualMachine controller delegates most of the work it does to the VirtualMachineInstance controller,
and reports on the state of the machine, among other things. The VirtualMachineReplicaSet controller en-
sures that workloads or VMs are always up and ready to go, and the Migration controller handles the process
of migrating the VM to another node, if the need arises.

KubeVirt: How to Run VMs on Kubernetes 15

The Virt-Handler Daemonset
Finally, let’s look at the Virt-Handler. The Virt-Handler is a Daemonset, which operates within every KubeVirt
node in the cluster. This Daemonset is responsible for communicating with the Virt-Launcher through the
UNIX domain sockets.

The Virt-Launcher, Virt-Controller and Virt-Handler Daemonset work together as the core system behind
KubeVirt.

Fig. 5 A Holistic View of a KubeVirt System (Source: Beyond Containers)

Putting it into Practice

Now that we have a good understanding of the KubeVirt ecosystem, and how it fits into a broader view of
the Kubernetes Cluster, you’re well-equipped to begin experimenting with a KubeVirt deployment of your

own.

If that is not an option, you can also run it in a nested virtualization mode by using binary translation. This
particular configuration is slower but sufficient for a proof of concept or demo purposes.

An excellent place to start is the KubeVirt project itself. The website includes detailed installation instruc-
tions, system requirements, and configuration information. The appendix of this white paper includes the
steps required to set up KubeVirt on the Platform9 free tier. Please ensure that you install PMKFT with Flannel
networking.

One important thing to note before you begin your KubeVirt

experiments: Since KubeVirt uses Linux QEMU and KVM by default,

you’ll need to run it on bare-metal servers.

KubeVirt: How to Run VMs on Kubernetes 16

Learning More
Finally, keep an eye on the Platform9 blog for upcoming posts on KubeVirt; and general information, best
practices, and performance tips for your Kubernetes clusters. You can even subscribe and have the latest
posts delivered to your inbox.

KubeVirt is still in its infancy, and as it matures, the power of being able to run Virtual Machines alongside
containers solves many problems that DevOps engineers currently face.

Appendix
See GitHub for more details.
Special thanks to Platform9 SE Clement Liaw for his technical contributions to this paper

https://github.com/platform9/kubevirt-docs

About Platform9: Platform9 enables freedom in cloud computing for enterprises that need the ability to run private, edge or hybrid
clouds. Our SaaS-managed cloud platform makes it easy to operate and scale clouds based on open-source standards such as
Kubernetes and OpenStack; while supporting any infrastructure running on-premises or at the edge. Enterprises such as S&P Global,
Kingfisher Retail, Cadence Design, Juniper Networks and Autodesk are using Platform9 to easily manage large scale private and
edge clouds. The company is headquartered in Mountain View, CA and is backed by Redpoint Ventures, Menlo Ventures, Canvas
Ventures, NGP Capital, Mubadala Capital and HPE Pathfinder.

Freedom in Cloud
Computing

Platform9.com/contact

Headquarters
2465 Latham Street

Suite 110
Mountain View, CA 94040

650-898-7369
info@platform9.com

