
CLOUD THREAT REPORT
2H 2021
Secure the Software Supply Chain to Secure the Cloud

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 2

Table of Contents
Foreword 3

Executive Summary 4

01
Supply Chain Insecurity 5

Red Team Exercise: Testing Cloud Supply Chain Security 5

Caught by the SOC—but It Was Already Game Over 8

Lessons Learned 9

02

Infrastructure as Code: A Key to Supply Chain Protection 10

Security Teardown: Terraform Modules 11

Security Teardown: Kubernetes Helm Charts 13

Security Teardown: Container Images 14

03
Conclusion and Recommendations 15

Ready to Identify the Threats in Your Cloud? 17

Methodology 17

About 18

Prisma Cloud 18

Unit 42 18

Authors 18

Contributors 18

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 3

Foreword
What do misconfigurations and cloud supply chain insecurity have in common? Both are risks that increase as
organizations shift more applications to the cloud. High-profile attacks like those involving SolarWinds and
Kaseya have brought these risks top of mind for everyone, executive boards, DevOps, and security teams alike.

While risks related to supply chains have received a lot of attention in the media recently, what the discussions
often overlook is that attackers don’t necessarily modify source code repositories to facilitate these breaches.
They don’t have to. They find weaknesses in the software development pipeline and attack those.

1. Sudhakar Ramakrishna, "An Investigative Update of the Cyberattack," SolarWinds, May 7, 2021,
https://orangematter.solarwinds.com/2021/05/07/an-investigative-update-of-the-cyberattack/.

Proactively addressing these threats is of the utmost importance. To this end, Unit 42’s elite cloud threat
intelligence team conducted a red team exercise on a customer’s software development pipeline. Posing
as malicious insiders, Unit 42 researchers were able to infiltrate the development environment and show
how an advanced persistent threat (APT) could carry out another SolarWinds/Kaseya-style attack with the
intent of compromising cloud assets and potentially impacting thousands of the customers’ consumers.

What can be done to manage this growing threat in your cloud environments? Put simply: shift security
left. Security teams can no longer ignore their build environments or ignore those of third parties that do
software development on their behalf.

To provide guidance on shifting security left, the Unit 42 Cloud Threat Report, 2H 2021 draws on the
Cloud Native Computing Foundation’s (CNCF) recent paper on Software Supply Chain Best Practices to
detail practical steps companies can take now to improve their security posture. Read on and find out how
to get started.

"The threat actor did not modify our source code repository. The malicious activity occurred
within the automated build environment for our Orion Platform software."
– Sudhakar Ramakrishna, CEO, SolarWinds1

Matthew Chiodi

Chief Security Officer, Cloud

Palo Alto Networks

@mattchiodi

https://unit42.paloaltonetworks.com/solarstorm-supply-chain-attack-timeline/
https://unit42.paloaltonetworks.com/threat-brief-kaseya-vsa-ransomware-attacks/
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 4

Executive Summary
Despite the media coverage afforded to the SolarWinds and Kaseya breaches, our research indicates
supply chain security in the cloud continues its growth as an emerging threat. Much remains
misunderstood about both the nature of these attacks and the most effective means of defending
against them. To better understand how supply chain attacks occur in the cloud, Unit 42 researchers
analyzed data from a variety of public data sources around the world and, at the request of a large SaaS
provider, executed a red team exercise against their software development environment. Overall, the
findings indicate that many organizations may still be lulled into a false sense of supply chain security
in the cloud. Case in point: Even with limited access to the customer’s development environment, it
took a single Unit 42 researcher only three days to discover several critical software development
flaws that could have exposed the customer to an attack similar to that of SolarWinds and Kaseya.

Drawing on Unit 42’s analysis of past supply chain attacks, the report explains the full scope of supply
chain attacks, discusses poorly understood details about how they occur, and recommends actionable
best practices that organizations can adopt today to help protect their supply chains in the cloud.

Supply Chain Flaws Are Difficult
to Detect
During a red team exercise with a large SaaS
provider, Unit 42 researchers were able to
leverage misconfigurations in their software
development environment that allowed
researchers to control the customer’s
software development processes. With this
level of access, researchers were able to
control the flow of software, allowing them
to perform a supply chain attack. They were
able to do this by exploiting process gaps
and critical security flaws like hardcoded
credentials.

Red team exercises, like the one performed
by the Unit 42 team, demonstrate an
example of how poor security hygiene
in the supply chain can impact cloud
infrastructure. The customer, in this case,
a large SaaS provider, maintains what most
would consider a mature cloud security
posture. However, Unit 42 researchers
found that 21% of the security scans they
ran against the customer’s development
environment resulted in misconfigurations
or vulnerabilities (a number that squarely
lines up with the industry average of 20%2).
Researchers believe it is highly likely that the
techniques employed during the red team
exercise could be successfully performed
against many organizations developing
applications in the cloud.

Third-Party Code Poses a
Hidden Risk
Unit 42 researchers found that 63% of
third-party code templates used in building
cloud infrastructure contained insecure
configurations, based on a global analysis.
However, more shockingly, they found that
96% of third-party container applications
deployed in cloud infrastructure contain
known vulnerabilities. In most supply chain
attacks, an attacker compromises a vendor
and inserts malicious code in software
used by customers. Cloud infrastructure is
susceptible to a similar approach in which
unvetted code could introduce security
flaws into cloud infrastructure and give
attackers access to sensitive data in the
cloud environment. An infrastructure flaw
can be riskier than a software flaw, as an
infrastructure flaw may directly impact
hundreds of cloud workloads, such as virtual
machines and data storage.

The challenge with third-party code is that
it could come from anyone, including an
advanced persistent threat (APT). This
raises the stakes for code that's intended to
be shared and used by others. Given modern
cloud software development practices
for sharing and incorporating third-party
code—and creating complex structures that
depend on many other building blocks—if an
attacker compromises third-party developers
or their code repositories, it's possible to
infiltrate thousands of organizations' cloud
infrastructures.

2. In July of 2021, Unit 42 researchers analyzed thousands of public repositories and found the global average to be 20%.

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 5

01
Supply Chain Insecurity
The SolarWinds incident was the first major software supply chain attack to make international headlines,
but it was hardly the first breach of its kind. In 2017, Unit 42 published an article titled “The Era of Software
Supply Chain Attacks Has Begun,” which identified software supply chain attacks as a growing threat
and predicted an increased focus on attacking “trusted” developers. The article also analyzed significant
attacks that had occurred to date, including:

• September 2015 – XcodeGhost: An attacker distributed a version of Apple’s Xcode software (used to build
iOS and macOS applications) that injected additional code into iOS apps built using it. This attack resulted
in thousands of compromised apps identified in Apple’s App Store®.

• March 2016 – KeRanger: Transmission, a popular open-source BitTorrent client, was compromised
through the injection of macOS ransomware into its installer. Users who downloaded and installed
the program would be infected with malware that held their files for ransom. Attackers injected the
 ransomware by taking control of the servers used to distribute Transmission.

• June 2017 – NotPetya: Attackers compromised a Ukrainian software company and distributed a
 destructive payload with network-worm capabilities through an update to the “MeDoc” financial
 software. After infecting systems using the software, the malware spread to other hosts in the network
and caused a worldwide disruption that affected thousands of organizations.

• September 2017 – CCleaner: Attackers compromised Avast’s CCleaner tool, used by millions to help keep
their PCs working properly. The compromise was used to target large technology and telecommunications
companies worldwide with a second-stage payload.

In each of these breaches, attackers compromised software development pipelines, then used the
trust placed in them to gain access to other networks. In this respect, supply chain attacks represent a
fundamentally different type of threat because attackers target upstream developers to breach multiple
targets through a single attack, rather than focusing on individual end-user organizations.

Red Team Exercise: Testing Cloud Supply Chain Security
While Unit 42 has been following software supply chain threats for years, the SolarWinds incident
provided an opportunity to gain a deeper understanding of the specific nature of such incidents and test
response strategies.

Prompted by the SolarWinds attack, a customer commissioned the Unit 42 team to attack their
continuous integration (CI) environment in the cloud in order to help test the resiliency of their own
supply chain. To initiate the attack, Unit 42 researchers masqueraded as malicious developers with
limited access to the customer’s CI environment and attempted to gain administrative rights to the
larger cloud environment. This operation, although somewhat different from the SolarWinds attack path,
illustrates how a malicious insider could harvest a CI repository to access sensitive information.

Path of Attack
Researchers were assigned a DevOps role commonly given to all developers in the customer’s DevOps
environment, including access to internal GitLab® repositories. This is where the customer's developers
normally built all their applications. Had the customer followed security best practices around separation
of duties for each developer, the Unit 42 exercise would not have been quite so efficient.

https://www.paloaltonetworks.com/blog/2017/12/2018-predictions-recommendations-era-software-supply-chain-attacks-begun/
https://www.paloaltonetworks.com/blog/2017/12/2018-predictions-recommendations-era-software-supply-chain-attacks-begun/
https://unit42.paloaltonetworks.com/malware-xcodeghost-infects-39-ios-apps-including-wechat-affecting-hundreds-of-millions-of-users/
https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
https://unit42.paloaltonetworks.com/unit42-threat-brief-petya-ransomware/
https://blog.avast.com/progress-on-ccleaner-investigation

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 6

Figure 1: Steps to poison a CI pipeline

Reconnaissance
GitHub/GitLab
Docker Hub
Artifact Hub

Initial Access
• Access ID and keys/session tokens
• Container access rights
• Mounted container sockets
• Mounted volumes
• Shared namespaces

Lateral Movement
Move laterally inside of the
cloud environment to locate
the CI creation process

3.

Target CI Pipeline
Target container images

Poison CI Pipeline
Poison target container
images

2.

1.

4.

5.

Without proper access controls to stop them, however, Unit 42 researchers were able to comb through the
customer’s GitLab resources. The team executed the following steps to escalate their privileges and gain
admin-level access to the customer’s software development pipeline (see figure 1):

1. Reconnaissance: Find, pull-down, and scan any known infrastructure as code (IaC) repositories
associated with the customer and employees who work for the organization:

 a. Researchers wrote a custom script to efficiently download every accessible repository to their cloud
lab environment. In total, researchers exfiltrated more than 150 unique repositories.

 b. Attackers and researchers alike will use a combination of custom scripts and open-source tools, like
Checkov (a cloud infrastructure security scanning tool) to search for hardcoded identity and access
management (IAM) credentials, misconfigurations, or service vulnerabilities. Each finding is then
cataloged and assessed for future offensive operations.

2. Initial access: Use the findings to attempt initial access to the customer’s cloud environment, for
example, successfully exploiting a vulnerability to gain initial access, such as in a vulnerable web-based
application, exposed SQL database, or exposed Docker® Daemon or Kubernetes® API, or leverage a
misconfigured cloud entity:

 a. Researchers gained initial access by leveraging several of the hardcoded IAM credentials identified
during the reconnaissance phase, which allowed the team to perform additional enumeration
operations.

 b. Attackers could leverage the successful compromise of a container management host system,
such as Docker or Kubernetes, via the exploitation of a misconfigured or vulnerable container that
allowed attackers to “escape” from that container and gain access to the host.

https://www.checkov.io/

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 7

3. Lateral movement: After a successful initial compromise of the organization’s cloud environment,
begin the process of moving laterally within the platform to acquire the final target:

 a. Researchers were successful in moving laterally, allowing them to escalate their access privileges
with the iam:PassRole technique. This presented the researchers with additional access to the
customer's cloud environment and CI pipeline.

 b. Attackers will continually cycle through reconnaissance, initial access, and lateral movement
operations. Further access to the cloud environment can be achieved with the goal of compromising
the CI pipeline.

4. Target CI pipeline: Locate and compromise the customer’s CI pipeline by targeting developer accounts
and CI pipeline applications, such as automation servers (for example, Jenkins®, JFrog®, or CircleCI®):

 a. Researchers used identified IaC templates located within repository managers, such as GitLab,
and repository storage applications, such as HashiCorp’s Vault, to identify the leakage of sensitive
information, such as hardcoded IAM credentials. Researchers found 26 IAM credentials hardcoded
within IaC templates and configuration and log files using this technique, which allowed them to
escalate their access to allow for CI pipeline modifications.

 b. Attackers will use vulnerability and misconfiguration scanning tools on CI pipeline applications,
such as Jenkins, JFrog, or CircleCI to expose weaknesses allowing for further compromises, such as
access to the CI pipeline codebase.

5. Poison CI pipeline: Modify select CI packages to build poisoned applications. With the access obtained
from the previous step, researchers now could poison the client’s CI pipeline. However, since code
modification was not permitted within the researchers’ scope of operations, the following two
techniques illustrate which steps an attacker could take against a CI pipeline:

 a. Poisoning core application codebase: This is the process of modifying the vendor’s source code
to create a backdoor network connection to malicious command and control (C2) infrastructure.
Typically, vendors scan and review their core source code for misconfigurations and vulnerabilities
frequently. This process will often catch attempts to modify source code directly. This is one of the
reasons why, as in the case of SolarWinds, attackers went after the supporting environment plugins
instead of the core code base.

 b. Poisoning support plugins: This is the process of modifying the code of plugins that support
the infrastructure for the core application. These modified supporting plugins can result in the
establishment of backdoor network connections to malicious C2 infrastructure within victim
environments. Unlike modifying an application’s core source code directly, modifying support
plugins may allow an attacker’s malicious modifications to go undetected. In the case of the
SolarWinds malicious plugin, SUNBURST, the plugin was signed with a legitimate SolarWinds digital
signature, which likely allowed the plugin to go unnoticed for a long period of time.

Using this approach—which parallels the one attackers would follow in a real-world supply chain
breach—the Unit 42 team was able to download every GitLab repository from the customer’s cloud
software storage location. From this codebase, Unit 42 researchers identified nearly 80,000 individual
cloud resources (such as cloud virtual machines, databases, and cloud storage instances as well as
network infrastructure like virtual private cloud (VPC) and network gateway entities) within 154 unique
CI repositories. Further, within the repositories, researchers found 26 hardcoded IAM key pairs, five of
which were session tokens instead of access keys. Session tokens traditionally only remain active for a
short period of time (one hour by default), making them less likely to incur substantial security risk over
long durations. By contrast, access keys can stay active for months, or even years, and as such, pose a
more significant risk to cloud environments over longer periods of time.

https://unit42.paloaltonetworks.com/fireeye-solarstorm-sunburst/

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 8

Using these hardcoded IAM key pairs, researchers were
able to escalate their privileges via the iam:PassRole
functionality, allowing them to create an EC2 instance
granting administrative access to the customer’s larger
cloud environment. Notably, this is the same attack
technique that researchers detailed within the 2H
2020 Cloud Threat Report support blog. Having now
witnessed the same vulnerability within two separate
environments, Unit 42 researchers can further infer
this technique would be successful in many other
cloud environments. See figure 2 for an example of a
misconfiguration that could allow for the malicious use
of the PassRole functionality.

Once Unit 42 researchers were able to escalate
their privileges to the administrator level, they could perform any number of actions within the cloud
environment, including poisoning CI operations to insert malicious code into the customer’s software
development pipeline. Researchers stopped at this point, however, because the scope of the engagement did
not include actual code modifications.

Caught by the SOC—but It Was Already Game Over
After breaching the customer’s CI resources and gaining full access to their cloud environment, the Unit
42 team looked more broadly at the customer’s security operations and response capabilities to help
them improve their security posture and prevent similar breaches by malicious parties.

To further assess the organization’s security posture, Unit 42 researchers employed the open-source
Palo Alto Networks reconnaissance tool IAMFinder, as described in detail in this blog. The IAMFinder
tool allowed researchers to enumerate AWS user and role accounts without API logs and error messages
appearing within the customer’s AWS environment. Since this technique does not send error messages
of attempted enumeration or reconnaissance efforts to the customer’s logging operations, the customer
was not able to detect the reconnaissance efforts. It was not until researchers switched to authenticated
API requests initiated by the command-line interface tool, awscli, that the customer’s properly
configured Amazon GuardDuty® service detected the researchers’ malicious activity. GuardDuty is an
AWS security tool that continuously monitors configured AWS accounts for malicious activity. What’s
more, GuardDuty detection occurred on only one of more than 50 identified AWS accounts used by the
customer and its developers. Unit 42 researchers noted that GuardDuty did flag the account based on a
malicious User-Agent string used by one researcher’s test machines. However, it was unclear if any of the
other AWS accounts were properly configured by the customer for GuardDuty monitoring.

The customer’s integration of Amazon GuardDuty with a cloud security posture management
platform—in this case, Palo Alto Networks Prisma Cloud—was essential to the detection of the attack.
Still, because the customer properly configured only one of the accounts to be monitored by GuardDuty,
only a small fraction of the overall malicious activity came to light in the SOC.

Figure 2: PassRole example

Note: In the cloud shared responsibility model, configuration of cloud service provider (CSP)
offered security service belongs firmly with the customer, not the CSP. In the case of our
customer, while they used GuardDuty, they failed to configure it according to AWS best practices.

Once alerted to the malicious actions, the customer’s security operations center (SOC) team was able to
identify the usage of each compromised IAM access key enumerated by researchers. The SOC team also
effectively employed a security orchestration, automation, and response (SOAR) tool that automated the
deactivation of the identified compromised keys in near-real time, thus effectively halting the second
phase of the red team exercise.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://unit42.paloaltonetworks.com/iam-roles-compromised-workloads/
https://github.com/prisma-cloud/IAMFinder
https://unit42.paloaltonetworks.com/aws-resource-based-policy-apis/
https://aws.amazon.com/cli/
https://aws.amazon.com/guardduty/

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 9

Lessons Learned
At the conclusion of the exercise, Unit 42 researchers worked with the organization’s SOC, DevOps, and
red and blue teams to develop a plan of action on how to shift security left. A big part of this was the early
identification of suspicious or malicious operations within their software development pipeline. The
customer adopted the following short-term, tactical steps, after which the Unit 42 Security Consulting
team helped to define a larger, longer-term cloud security strategy:

• Prevent the exfiltration of DevOps repositories from GitLab environments for non-essential user
 accounts by restricting access:

» Developers should only have access to the specific repositories relevant to their work.

» Security measures should be put in place to limit the access and download capabilities of repositories
outside of their working requirements.

» Role-based access control (RBAC) should be employed to limit access to repositories to only the user
accounts required to maintain or modify those repositories.

• Implement cloud platform detection rules for sensitive API requests originating from outside of the
 organization’s network range. The customer confirmed access to certain sensitive APIs typically only
takes place internally, and therefore external access should immediately be deemed suspicious.

• Implement cloud platform detection rules for user-specific API requests directed toward IAM service
accounts:

» For example, if an IAM service role is created for a Fluentd service, that service account should only
maintain API access to read and write data (log information) from select cloud resources. This service
account should not be allowed to perform API requests for reading or listing IAM users, roles, or policy
information.

https://www.paloaltonetworks.com/unit42/proactive-assessments
https://www.paloaltonetworks.com/unit42/proactive-assessments
https://www.fluentd.org/

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 1 0

02
Infrastructure as Code: A Key to Supply
Chain Protection
In most known supply chain attacks, attackers compromised software vendors' continuous integration
and continuous delivery/deployment (CI/CD) pipelines and injected malicious code into packages that
millions of downstream users depend on.

Defending against this risk is difficult for two reasons. First, there are hundreds of dependent packages
maintained by open-source developers in a typical modern cloud native application. Each of these
dependencies carries a certain risk and can be a vector to another supply chain attack. Second, third-
party packages are routinely imported into supply chains via infrastructure as code (IaC) templates that
organizations don’t always inspect sufficiently. As a result, security vulnerabilities can creep in and
remain undetected.

For example, when creating an IaC template, developers commonly bootstrap infrastructure using
multiple third-party packages, such as VPC networks and Kubernetes clusters. Then, when deploying
the infrastructure, all the dependent packages need to be downloaded and integrated. As cloud native
applications grow more complex, an organization's cloud infrastructure will rely on more and more
dependent packages. This chain of dependency, similar to the concept of the supply chain, can soon
become troublesome and difficult to manage. Indeed, our research shows a positive correlation between
the number of security flaws and dependencies.

Figure 3 illustrates how a simple cloud infrastructure built with IaC can inherit many misconfigurations
and vulnerabilities from the dependent packages. This deployment pipeline contains three main stages:
cloud infrastructure provisioning, Kubernetes Helm chart deployment (Helm is a Kubernetes deployment tool
for automating the packaging and deployment of apps and services to Kubernetes clusters), and container
image instantiation. At each stage, different dependent packages are deployed, and various security
issues can be subsequently introduced. The following are a few examples of how security issues can be
introduced in each stage:

• Cloud infrastructure provisioning: The IaC uses three types of Terraform modules: VPC, Kubernetes, and
storage. The storage module also depends on two other modules. After all five modules are deployed, a
total of nine misconfigurations are introduced.

• Kubernetes application deployment: A Kubernetes application is deployed using a Helm chart. This main
Helm chart depends on two other Helm charts, and each Helm chart also depends on two container images.
After all three Helm charts are deployed, a total of five Kubernetes misconfigurations are introduced.

• Container image instantiation: Each container image is instantiated to one or more containers across the
cluster. Inside each container, the application code and all its dependent packages are loaded into memory.
After all eight containers are deployed, a total of 40 application vulnerabilities are introduced.

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 1 1

The cloud infrastructure
depends on multiple

IaC packages and helm charts

Cloud Infrastructure Provisioning

9 misconfigs

Charts

Each helm chart depends on
multiple container images

5 misconfigs

Image 1 Image 2

9 misconfigs
+

Kubernetes Application Deployment

Each image depends on
multiple app packages

5 misconfigs

9 misconfigs
+

Container Image Instantiation

40 vulnerabilities
+

Cloud Resources

Storage VPC Kubernetes

Packages

Figure 3: Chain of dependencies in a modern cloud native application

This example highlights how vulnerabilities and misconfigurations can quickly snowball within the
context of supply chain dependencies. Although the deployed infrastructure in the examples will be
fully functional, the default configurations of the dependent packages may not be secure. If any of the
dependent packages are compromised, millions of cloud environments relying on them could become
vulnerable to attacks like those in recent history.

To dive deeper into the scope of IaC-related security problems at each stage of the cloud native software
dependency chain, Unit 42 researchers analyzed thousands of Terraform scripts, Helm charts, and
Docker images.

Note: The following IaC misconfigurations are created by the cloud user, not by CSPs or
IaC providers. In the context of the shared responsibility model, IaC template configuration
belongs entirely to the cloud user. The challenge for organizations is ensuring that secure IaC
configurations are consistently enforced across multiple cloud accounts, providers, and software
development pipelines.

Security Teardown: Terraform Modules
Unit 42 researchers used Bridgecrew’s Checkov to analyze 4,055 Terraform templates and 38,480
Terraform files in popular open-source Terraform repositories. The owners of these templates can
be a CSP, a vendor, or any open-source developer. Checkov is an open-source static code analysis
tool for infrastructure as code. Overall, 63% of the Terraform templates contain one or more insecure
configurations, and 49% of the templates contain at least one critical or highly insecure configuration.
Considering the number of times each module has been downloaded, 64% of the downloads result in at
least one high or critical insecure configuration.

Anyone can publish a module on open-source Terraform repositories, and all the Terraform modules
are open-sourced and available on GitHub. The advantage of open-source tools is that anyone can
scrutinize the code, but the downside is that no one is obligated to maintain or secure the code. While
new cloud features and services are released on a daily basis, some modules have not been updated for
years, like third-party modules, artifactory (not from JFrog), and fpc-ops.

https://www.checkov.io/
https://www.terraform.io/docs/registry/modules/publish.html
https://registry.terraform.io/modules/jainishshah17/artifactory/aws/1.0.0?tab=outputs
https://registry.terraform.io/modules/ketzacoatl/fpc-ops/aws/latest

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 1 2

0

500

1,000

1,500

1-5 6-10

1,353

693

332

123 32

11-20 21-50

Encryption
23%

General Security
28.9%

Application Security
0.7%IAM

11.1%
Kubernetes

2.8%
Backup and Recovery

5.1%

Networking
10.8%

Logging
17.1%

50+

N
um

b
er

 o
f

m
od

ul
es

Misconfiguration count

Figure 4: Public Terraform modules by number of misconfigurations (left);
types of misconfigurations and their percentages (right)

We found similar misconfigurations across different CSPs, such as unencrypted data in cloud storage,
disabled logging for cloud workloads, and publicly exposed remote management services, as shown in
table 1. The detailed explanation and remediation process for each misconfiguration is available in the
AWS policies for Palo Alto Networks Bridgecrew.

Table 1: Top Five Most Common Alerts Addressing Insecure Configurations for Each CSP

AWS

Ensure all data stored in the Launch configuration EBS is securely encrypted

Ensure all data stored in the S3 bucket has versioning enabled

Ensure all data stored in the S3 bucket is securely encrypted at rest

Ensure no security groups allow ingress from 0.0.0.0:0 to port 22

Ensure VPC flow logging is enabled in all VPCs

Azure

Ensure default network access rule for Storage Accounts is set to deny

Ensure storage for critical data is encrypted with Customer Managed Key

Ensure that the expiration date is set on all secrets

Ensure Storage Account is using the latest version of TLS encryption

Ensure that 'Secure transfer required' is set to 'Enabled'

GCP

Ensure that VPC Flow Logs is enabled for every subnet in a VPC Network

Ensure 'Block Project-wide SSH keys' is enabled for VM instances

Ensure VM disks for critical VMs are encrypted with Customer Supplied Encryption Keys (CSEK)

Ensure that instances are not configured to use the default service account

Ensure all Cloud SQL database instances require all incoming connections to use SSL

https://docs.bridgecrew.io/docs/aws-policy-index

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 1 3

Security Teardown: Kubernetes Helm Charts
Unit 42 researchers analyzed 3,155 Helm charts and 8,805 YAML files in Artifact Hub using helm-scanner.
Overall, 99.9% of the Helm charts contain one or more insecure configurations, and 6% of Helm charts
contain at least one critical or highly insecure configuration.

Similar to Terraform modules, each Helm chart can depend on other charts, and each dependent chart
can also depend on others. Twenty-nine percent of the Helm charts in Artifact Hub have one or more
dependencies. For charts with dependencies, 62% of the misconfigurations come from the dependent
charts. One of the charts we analyzed pulled in a total of 23 dependent charts when deploying, and 92%
of the misconfigurations were in the dependent charts. Figure 5 (bottom) shows a positive correlation
between the number of dependencies and the number of misconfigurations.

0

500

1,000

1-10 11-20

877

283

419

21-30 31-40 41-50

N
um

b
er

 o
f

ch
ar

ts

Misconfiguration count

250

750

115 107

51+

688

0

500

1,000

0 1

173

2 3 4

A
ve

ra
ge

 m
is

co
nf

ig
ur

at
io

n
co

un
t

Dependency count

250

750

197

5

36
62

138

317
390 429

819

6 7 8

Figure 5: Kubernetes Helm charts categorized by number of misconfigurations
they contain (top); average number of misconfigurations for Helm

charts with different numbers of dependencies (bottom)

The most common and concerning misconfigurations we saw were over-privileged containers, as
shown in table 2. Most containers don't need to run in privileged mode or require system administration
capability. Privileged containers can access devices on the host and bypass namespace isolation. If a
privileged container is compromised, the attackers can easily gain access to the host or even the entire
cluster. For a deeper dive into securing Kubernetes and Helm charts, check out this series of blog posts.

https://artifacthub.io/
https://github.com/bridgecrewio/helm-scanner
https://bridgecrew.io/blog/open-source-helm-security-research/

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 1 4

Table 2: Top Five Critical or High Kubernetes Violations

Container should not be privileged

Do not use the CAP_SYS_ADMIN Linux capability

Do not admit privileged containers

Ensure that the --bind-address argument is set to 127.0.0.1

Ensure that the --kubelet-certificate-authority argument is set as appropriate

Security Teardown: Container Images
Unit 42 researchers analyzed the container images used in the Kubernetes Helm charts. A total of 1,544
distinct images were studied. These container images were hosted in various public registries, such as
Docker Hub, Quay®, and Google Container Registry (GCR). Overall, we found known vulnerabilities in
96% of the images, and 91% of the images contain at least one critical or high vulnerability.

Vulnerabilities can be introduced if a Helm chart maintainer fails to update the charts or a container
image maintainer fails to update the images. Many widely used libraries, such as libgcrypt20 and openssl,
are well-maintained and always have vulnerability-free versions available. However, most users don't
download and compile these libraries from the source code. Instead, they rely on package managers such as
rpm, dpkg, and container image maintainers to build the source code into packages that can be easily used
on different platforms. The patched source code can reach the end users only when all the intermediate
package managers have all integrated the updates.

0

400

1-20 21-40

291

41-60 61-80 81-100

A
ve

ra
ge

 v
ul

ne
ra

b
ili

ty
 c

ou
nt

Dependent package count

200

600

322

100+

22 98

173

515

0

500

1,000

0 1-40

802

307

158

41-80 81-120 121-160

Im
ag

e
co

un
t

Vulnerability count

250

750

62
90

161-200

69
118

200+

Figure 6: Container images categorized by the number of vulnerabilities they contain (top);
vulnerability count of container images with different numbers of dependent packages (bottom)

https://hub.docker.com/
https://quay.io/
https://gcr.io/
https://packages.debian.org/search?keywords=libgcrypt20
https://packages.debian.org/search?suite=default§ion=all&arch=any&searchon=names&keywords=openssl

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 1 5

03
Conclusion and Recommendations
The key takeaway from our analysis is that despite much talk in the security community about shifting
left, organizations are still very much neglecting DevOps security, due, in part, to lack of attention to
supply chain threats. Cloud native applications have a long chain of dependencies, including open-source
tools and components from other vendors and developers. Complicating matters, each dependency may
also have other dependencies. This leads us to the conclusion that DevOps and security teams must
gain visibility into the bill of materials in every cloud workload. Only with this visibility is it possible to
evaluate the risk in every stage of the dependency chain and create guardrails to contain the impact if any
stage is compromised.

However, believing that code scanning at the end of the development lifecycle is sufficient, many
organizations have a false sense of security in the cloud. This has led to development environments
becoming the vector of choice for APTs. This was certainly the case for the SolarWinds breach as well as
what could have been a major breach for our customer had the Unit 42 team not identified the customer’s
supply chain vulnerabilities before a malicious attacker did.

Securing Your Supply Chain
To address cloud software supply chain security holistically, the Cloud Native Computing Foundation
(CNCF) released a best practices white paper in 2021. The white paper focuses on five key areas:
securing the source code, securing materials, securing build pipelines, securing artifacts, and securing
deployments. The Unit 42 team recommends an in-depth read of this document and embedding these
best practices into your cloud security strategy.

The challenge many organizations will face, however, is turning theory into practice. If your organization
does not have a defined cloud security strategy, we recommend starting with the Big Cloud 5 framework.
This includes some key aspects from the CNCF’s best practices guide. A focal point of the framework
is embedding security into the software development pipeline. Your team can get started by working
through the three steps that follow.

1. Define Your Shift-Left Security Strategy
The first step of any journey is to define where you intend to go. Do not underestimate the power of a
concisely written strategy document (ideally one page). It is critical to define what shift-left security
means in your organization. This is about painting the most vivid picture possible for your teams so they
know what success looks like. Key items to include in this document are vision, ownership/responsibility,
milestones, and metrics. Expect the strategy document to mature over time, and don’t spend too much
time trying to perfect it. Iteration over time is essential.

2. Understand Where and How Software Is Created in Your Organization
Perhaps one of the most challenging aspects of shifting security left is getting a handle on how and where
software is created in your organization. Depending on the size of your company, this could run the
gamut from straightforward to extremely challenging. This step is significant because the end result is
what allows the security team to understand where they can move security closer to development. Large
organizations that have not undertaken this process will likely spend a few months digging. Oftentimes,
development is outsourced to multiple vendors, which will require additional work and sometimes
contract reviews. Small and medium-sized organizations will find this step relatively straightforward but
equally rewarding.

The goal of this step is to first look organization-wide and document the overall flow of software
in your company. Medium to large organizations will want to start at the macro level and then drill
into individual business units. It is highly likely that each business unit will have its own software
development process and tools. Key items to identify in this phase include who is developing code
(people), how it flows from development laptops to production (process), and which systems they are
using to enable the process (technology).

https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://www.paloaltonetworks.com/blog/2019/05/cloud-big-cloud-5-holistic-cloud-security-strategy/

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 1 6

3. Identify and Implement Security-Quality Guardrails
Quality assurance has always been part of the software development lifecycle. However, software quality
has not historically included security. This must change, and the work done in the previous steps will
arm you to do this. Every step of the software development process is an opportunity to give feedback and
look for security issues. The most effective security teams start small. They arm development teams with
simple and effective tools that become part of the daily development routine. Open-source tools that fit
well into this category include Bridgecrew’s Checkov, Yor, and AirIAM.

What Shift-Left Security Looks Like
It’s quite common to have a security strategy that focuses almost entirely on the “right” side of the
software development pipeline. Using the visual that follows, which represents what we will call Scenario
1 (figure 7), development starts without security, and software quality is only checked during runtime.
This often results in an uneasy conversation between security and development when vulnerabilities are
found, not to mention a software development pipeline that is more open to attack from APTs.

Scenario 1

Vulnerability scan and runtime
issues without context frustrate

developers and security

Build Deploy Run

Figure 7: Development without security

In Scenario 2 (figure 8), however, security teams have shifted security left by investing the time to
understand the development process within their organization. They have also embedded security
processes and tools into all stages of the CI/CD pipeline, resulting in automated security guardrails.

Scenario 2

Vulnerability scanning and
runtime issues with context

facilitate remediation

Builds automatically
checked for security

defects and gets pushed

Development identifies
vulnerable code, packages,

and fixes prior to deploy

Figure 8: Development with security integrated

https://github.com/bridgecrewio/checkov
https://github.com/bridgecrewio/yor
https://github.com/bridgecrewio/AirIAM

C l o u d T h r e a t R e p o r t , 2 H 2 0 2 1 1 7

Every organization today needs to strive for Scenario 2. As headline-grabbing supply chain breaches
have made all too clear, the cloud supply chain remains a critical vulnerability for many businesses. The
nature of this vulnerability is not always fully understood by stakeholders, in large part due to a failure
to recognize the expansive risks that can arise from complex, multilayered dependency chains within
software development pipelines.

Utilizing the three previous steps will put your organization on a solid path toward not only shifting
security left but making security synonymous with development. As your organization moves toward shift
left as part of its cloud journey, it is critical that security controls be automated and part of every phase of
the software development lifecycle.

Ready to Identify the Threats in Your Cloud?
Prisma® Cloud analyzes more than 10 billion events every month. By proactively detecting security and
compliance misconfigurations as well as triggering automated workflow responses, Prisma Cloud helps
ensure you continuously and securely meet the demands of your dynamic cloud architectures. To get
started with Prisma Cloud, request your free trial today.

Methodology
In July of 2021, Unit 42 researchers used the publicly available data from open-source Terraform
repositories, Artifact Hub, Docker Hub, Quay, and Google Container Registry (GCR) to evaluate the
security posture of the modern cloud native software supply chain. The data in these public repositories
are global and not restricted to specific regions. Palo Alto Networks IaC scanning tool Checkov and
helm-scanner were used to analyze the downloaded Terraform templates, Kubernetes Helm charts, and
Kubernetes YAML templates. Palo Alto Networks Prisma Cloud container vulnerability scanner was then
used to analyze the components and vulnerabilities in each container image.

Bridgecrew by Prisma Cloud
Developed and expanded in collaboration with customers and partners, Bridgecrew has been vital in
connecting code to the cloud and engineering to security. By providing security feedback in code, with
code, and making it accessible through existing developer tools and workflows, the Bridgecrew platform
has transformed the way hundreds of teams secure and govern infrastructure.

Palo Alto Networks WildFire
The cloud-based WildFire® malware prevention service employs a unique multi-technique approach,
combining dynamic and static analysis, innovative machine learning techniques, and a groundbreaking
bare metal analysis environment to detect and prevent even the most evasive threats.

Palo Alto Networks AutoFocus
The AutoFocus™ contextual threat intelligence service provides the intelligence, analytics, and context
required to understand which attacks require immediate response, as well as the ability to make
indicators actionable and prevent future attacks.

https://www.paloaltonetworks.com/prisma/request-a-prisma-cloud-trial
https://artifacthub.io/
https://hub.docker.com/
https://quay.io/
https://gcr.io/
https://www.checkov.io/
https://github.com/bridgecrewio/helm-scanner
https://docs.twistlock.com/docs/enterprise_edition/tools/twistcli_scan_images.html

3000 Tannery Way
Santa Clara, CA 95054

Main: +1.408.753.4000
Sales: +1.866.320.4788
Support: +1.866.898.9087

www.paloaltonetworks.com

© 2021 Palo Alto Networks, Inc. Palo Alto Networks is a registered
trademark of Palo Alto Networks. A list of our trademarks can be found at
https://www.paloaltonetworks.com/company/trademarks.html. All other
marks mentioned herein may be trademarks of their respective companies.
Palo Alto Networks assumes no responsibility for inaccuracies in this document
and disclaims any obligation to update information contained herein. Palo Alto
Networks reserves the right to change, modify, transfer, or otherwise revise this
publication without notice. unit42_cloud-threat-report-2h-2021_092321

About
Prisma Cloud
Prisma® Cloud is a comprehensive cloud native security platform with the industry’s broadest security
and compliance coverage—for applications, data, and the entire cloud native technology stack—
throughout the development lifecycle and across hybrid and multicloud deployments. Prisma Cloud’s
integrated approach enables security operations and DevOps teams to stay agile, collaborate effectively,
and accelerate cloud native application development and deployment securely.

Unit 42
Unit 42 brings together our world-renowned threat researchers with an elite team of security consultants
to create an intelligence-driven, response-ready organization. The Unit 42 Threat Intelligence team
provides threat research that enables security teams to understand adversary intent and attribution,
while enhancing protections offered by our products and services to stop advanced attacks. As threats
escalate, Unit 42 is available to advise customers on the latest risks, assess their readiness, and help them
recover when the worst occurs. The Unit 42 Security Consulting team serves as a trusted partner with
state-of-the-art cyber risk expertise and incident response capabilities, helping customers focus on their
business before, during, and after a breach.

Authors
Nathaniel “Q” Quist, Senior Threat Researcher, Public Cloud Security, Palo Alto Networks

Jay Chen, Senior Threat Researcher, Public Cloud Security, Palo Alto Networks

Matthew Chiodi, Vice President and Chief Security Officer, Cloud, Palo Alto Networks

Contributors
Matt Johnson, Bridgecrew Developer Advocate Lead, Palo Alto Networks

Stephen Giguere, Bridgecrew Developer Advocate, Palo Alto Networks

https://www.paloaltonetworks.com/unit42

