
Logging for Kubernetes
vs. Logging for Red Hat
OpenShift

LOGDNA EBOOK

Kubernetes and OpenShift are broadly similar platforms. In some respects, they are the same
platform, given that OpenShift is based largely on Kubernetes. Yet there are notable differences
between them, not least when it comes to logging.

2 3LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSH IF T LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSHIF T

Kubernetes and OpenShift are broadly similar platforms. In some respects, they are the
same platform, given that OpenShift is based largely on Kubernetes. Yet there are notable
differences between them, not least when it comes to logging.

To provide guidance for teams deploying Kubernetes and OpenShift -- or those in the
process of deciding which platform is the best fit for their needs -- LogDNA has prepared
this eBook, which explains how logging works in both Kubernetes and OpenShift. The
chapters below discuss how Kubernetes and OpenShift relate to each other, which data
each platform makes available to log, how to collect logs on the respective platforms and
how their approaches to logging are similar and different.

As the eBook explains, there are a variety of deployment options available for both
Kubernetes and OpenShift. The logging tools and methods available to you will vary, in many
cases, depending on where you deploy the platforms -- on your own infrastructure or using
a managed cloud service -- as well as which Kubernetes distribution or OpenShift version
you use. For that reason, the following chapters don’t exhaustively cover every logging
strategy available for every type of Kubernetes or OpenShift deployment.

Instead, we’ll discuss the main generic logging methods available for standard Kubernetes
and OpenShift environments. We’ll also contextualize the discussion by explaining how
logging works when deploying these technologies on one specific platform -- IBM Cloud --
which integrates with LogDNA to simplify and centralize log management for both
Kubernetes and OpenShift.

Chapter 1: Understanding Kubernetes and OpenShift

Chapter 2: Kubernetes Logging Essentials

Chapter 3: OpenShift Logging Essentials

Chapter 4: Collecting Kubernetes Logs

Chapter 5: Collecting OpenShift Logs

Conclusion: Kubernetes Logging vs. OpenShift Logging

4

6

8

9

11

14

EXECUTIVE SUMMARY TABLE OF CONTENTS

4 LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSH IF T 5LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSHIF T

CHAPTER 1:
UNDERSTANDING
KUBERNETES & OPENSHIFT

To understand how to manage logs for Kubernetes
and OpenShift, you must understand what each
platform does, and how logs contribute to achieving
the intended results that the platforms can deliver.

What is Kubernetes?
Kubernetes is an application management platform
that offers several key types of functionality:

Application hosting: Kubernetes’s first and
foremost feature is hosting applications.
Typically, those applications are hosted in
containers, although it’s possible to run
other types of workloads, such as virtual
machines, with Kubernetes.

Load balancing: Kubernetes automatically
distributes traffic between different
application instances to optimize
performance and availability.

Storage management: Kubernetes can
manage access to storage pools that
applications use to store stateful data.

Self-healing: When something goes wrong,
such as an application failure, Kubernetes
attempts to fix it automatically. (It doesn’t
always succeed, however, which is one
reason why Kubernetes logging is so
important.)

Kubernetes offers a variety of other features, too,
but these are the core areas of functionality it
offers.

As you’ll note, logging and monitoring are not among
Kubernetes’s core features; for more on that, see
the following chapter.

What is OpenShift?
OpenShift is also a platform for managing
containerized applications running on Red Hat
Enterprise Linux servers. (OpenShift does not
support other operating systems.) It offers the
same core types of functionality as those described
above for Kubernetes -- which is no surprise
because, again, OpenShift is based on Kubernetes.

However, one difference between Kubernetes and
OpenShift is that the latter is developed by Red Hat,
which offers multiple deployment options:

OpenShift Container Platform, which you
deploy on your own infrastructure. This is a
commercial platform that you pay for. Red
Hat provides support.

OKD (formerly known as OpenShift Origin),
a fully open source and completely free
platform. Origin is community-supported.

OpenShift Online, an SaaS implementation
of OpenShift that is hosted on infrastructure
maintained by Red Hat. This is also a
commercial platform and is supported by
Red Hat.

OpenShift dedicated, a fully managed
offering from Red Hat. This is a commercial
offering as well, and offers the most
extensive level of support from Red Hat.

Red Hat OpenShift on
IBM Cloud
In addition to the preceding iterations of OpenShift,
which are available directly from Red Hat, several
public cloud vendors offer (in partnership with Red
Hat) fully managed OpenShift services hosted on their
clouds. This includes OpenShift on IBM Cloud, a
service that allows users to spin up OpenShift clusters
with just a few clicks on the infrastructure provided
and managed by IBM.

OpenShift on IBM Cloud provides access to most of
OpenShift’s native functionality. As we’ll explore later
in this article, however, it also offers certain add-on
features, including a more user-friendly OpenShift log
management solution than OpenShift’s built-in log
tooling.

OpenShift vs. Kubernetes
OpenShift is a certified Kubernetes distribution that is
fully compatible with Kubernetes’s native tooling. That
means you can use tools like kubectl on OpenShift if
you want.

This does not mean, however, that OpenShift is just a
Kubernetes distribution. It differs from Kubernetes in
key ways. For one, there are OpenShift-specific tools
(like oc, which provides many of the same features as
kubectl, as well as a built-in container registry) that
admins should generally use instead of relying on
generic Kubernetes tools. For another, although the
technology behind OpenShift is open source, the
platform is a commercial product developed by Red
Hat. Processes like upgrades and log management
(again, keep reading for more on that) also work
somewhat differently in OpenShift than in Kubernetes.

6 LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSH IF T 7LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSHIF T

The previous chapter discussed what Kubernetes
does. You may have noticed that logging and
monitoring weren’t on the list of core Kubernetes
features.

That’s not because Kubernetes doesn’t offer any kind
of logging and monitoring functionality. It does, but
it’s complicated.

On the one hand, Kubernetes offers some basic
functions through kubectl for checking on the status
of objects in a cluster, which we’ll discuss below. It
also creates logs for certain types of data, and it
exposes other types of data in ways that make it
available for collection through third-party logging
tools.

On the other hand, Kubernetes offers no full-fledged,
native logging solution. Unlike, say, AWS, which has a
built-in logging solution in the form of CloudWatch, or
OpenStack, which has its own comprehensive logging
solution, stock Kubernetes doesn’t have a complete
native logging service, or even a preferred third-party
logging method. Instead, it expects you to use
external tools to collect and interpret log data.

That said, certain Kubernetes distributions do come
with built-in logging extensions based on third-party
tooling, or at least a preferred logging method that
they support. For example, as we’ll see below,
Kubernetes on IBM Cloud integrates with LogDNA to
collect Kubernetes log data and enable real-time
analysis and log management using LogDNA.

In most cases, it’s possible to use an alternative

CHAPTER 2: KUBERNETES
LOGGING ESSENTIALS

logging method even on a Kubernetes distribution
that has a preferred or natively integrated logging
solution. However, the vendor-supported approach is
usually simpler to implement.

What to log in Kubernetes
No matter which logging option you choose, there are
several log data types that you can collect in
Kubernetes.

Application logs

First and foremost are the logs from the applications
that run on Kubernetes. The data stored in these logs
consists of whichever information your applications
output as they run. Typically, this data is written to
stdout inside the container where the application runs.

Below, we’ll look at how to access this data in the
“Viewing application logs” section.

Kubernetes cluster logs

Several of the components that form Kubernetes itself
generate their own logs:

• Kube-apiserver.
• Kube-scheduler.
• Etcd.
• Kube-proxy.
• Kubelet.

These logs are usually stored in files under the /var/log
directory of the server on which the service runs. For
most services, that server is the Kubernetes master
node. Kubelet, however, runs on worker nodes.

If you’re experiencing a cluster-level problem (as
opposed to one that impacts just a certain container

or pod), these logs are a good place to look for insight.
For example, if your applications are having trouble
accessing configuration data, you could look at Etcd
logs to see if the problem lies with Etcd. If a worker
node is failing to come online as expected, its Kubelet
log could provide insights.

Kubernetes events

Kubernetes keeps track of what it calls “events,” which
can be normal changes to the state of an object in a
cluster (such as a container being created or starting)
or errors (such as the exhaustion of resources).

Events provide only limited context and visibility. They
tell you that something happened, but not much about
why it happened. They are still a useful way of getting
quick information about the state of various objects
within your cluster.

Kubernetes audit logs

Kubernetes can be configured to log requests to the
Kube-apiserver. These include requests made by
humans (such as requesting a list of running pods) and
Kubernetes resources (such as a container requesting
access to storage).

Audit logs record who or what issued the request,
what the request was for, and the result. If you need to
troubleshoot a problem related to an API request,
audit logs provide a great deal of visibility. They are
also useful for detecting unusual behavior by looking
for requests that are out of the ordinary, like repeated
failed attempts by a user to access different resources
in the cluster, which could signal attempted abuse by
someone looking for improperly secured resources. (It
could also reflect a problem with your authentication
configuration or certificates.)

8 LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSH IF T 9LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSHIF T

CHAPTER 3: OPENSHIFT
LOGGING ESSENTIALS

CHAPTER 4: COLLECTING
KUBERNETES LOGS

Overall, OpenShift is quite similar to Kubernetes in
terms of the data available for logging. But, there are
some nuanced differences that make it worth
walking through different log data categories in
OpenShift. The data categories discussed below
apply no matter which OpenShift deployment option
you choose.

OpenShift events

In OpenShift, an event is one of the dozens of
different actions that may occur within your cluster.
Some of them are routine occurrences, like the
creation of a container, that generally don’t require
your attention. Others signal undesirable conditions,
like a storage volume that failed to mount or an
out-of-memory situation, which you may want to
investigate further. A full list of OpenShift event
types is available here.

The information included in events data is basic.
OpenShift tells you that the event occurred, but
doesn’t provide detail about why it occurred or, if
something failed, what the scope of the failure was.
OpenShift also doesn’t map interrelated events
together; it’s up to you to figure out how one event
relates to another. For these reasons, events provide
only limited visibility.

Nonetheless, events offer a quick way of gaining a
basic understanding of the state of your cluster and
identifying common problems. Historical event data
is also useful for researching the root cause of
failures.

Now, let’s get into the meat of this eBook: How to
collect log data from Kubernetes and OpenShift
(starting with Kubernetes, the focus of this chapter).

The various types of log data described above can
be accessed in different ways.

Viewing application logs

There are two main ways to interact with application
log data. The first is to run a command like:

kubectl logs pod-name

Where pod-name is the name of the pod that hosts
the application whose logs you want to access.

OpenShift API audit logs

OpenShift provides support for logging API requests
issued by users and administrators and other
components of the cluster. This data, which is
known as API audit logs, provides a deeper level of
visibility into actions performed within a cluster than
do events. That is because the audit logs provide full
context for each request: Where it originated, which
namespace it impacted (if relevant), what the
response was, and more.

Infrastructure logs

If you’re responsible for managing the infrastructure
that hosts your OpenShift cluster, keeping track of
the underlying servers’ health is important. You can
do this by looking at the standard Linux log files in
the /var/log directory of each node in your OpenShift
cluster.

The kubectl method is useful for a quick look at log
data. But if you want to store logs persistently and
analyze them systematically, you’re better served by
using an external logging tool, like LogDNA, to
collect and interpret the logs. On IBM Cloud
Kubernetes Service, or IKS, you can set up a LogDNA
instance to perform this function for application
logs (as well as for logs associated with Kubernetes
itself) by following a few steps in the IKS Web
Console or from the command line. For full
instructions, check out the IBM Cloud
documentation.

Viewing cluster logs

There are multiple ways of viewing cluster logs. You
can simply log into the server that hosts the log you
want to view (as noted above, that’s the Kubernetes
master node server in most cases) and opening the
individual log files directly in a text editor, less, cat
or whatever command-line tool you prefer. Or, you
can use journalctl to retrieve and display logs of a
given type for you.

The most user-friendly solution, however, is again to
use an external logging tool, like LogDNA. As noted
above, IBM Cloud’s integration with LogDNA makes it
easy to collect Kubernetes cluster logs as well as
application logs and analyze them through a
centralized interface, without having to worry about
the tedious process of collecting individual logs
from each of your nodes through the command line.

10 LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSH IF T 11LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSHIF T

Viewing events

You can view Kubernetes event data through kubectl
with a command like:

kubectl get events -n default

Where the -n flag specifies the namespace whose
events you want to view (default in the example
above). The command:

kubectl describe my-pod

Will show you events data for a specific pod.

Because the context of events data is limited, you
may not find it very useful to log all events. However,
you can always redirect the CLI output from kubectl
into a log file and then analyze it with a log analysis
tool.

Viewing audit logs

To a greater extent than is the case for other types
of Kubernetes log data, the way you view and
manage audit logs varies significantly depending on
which Kubernetes distribution you use and which log
collector you want to use to collect these logs. There
is no generic and straightforward way to collect
audit logs directly from kubectl.

On IKS, audit events are routed to a webhook URL.
From there, you can collect logging data with IKS’s
native LogDNA integration by following these
instructions.

CHAPTER 5: COLLECTING
OPENSHIFT LOGS

Compared to standard Kubernetes, log management
in OpenShift is a bit more convenient overall, thanks
to the robust support for accessing and interpreting
log data that is built into OpenShift’s native tools.

Accessing OpenShift event data

Event data can be accessed in several ways. One is
to use the OpenShift Web Console by navigating to
Browse > Events. This is convenient if you need to
check event data quickly, but you can’t access it
programmatically in this way.

If you want more control over which event data you
are looking at, or you want to pass it to external
tools, you can use the CLI utility oc with a command
such as:

oc get events

You can pass a few parameters to control output,
such as specifying a certain namespace using the -n
flag. However, the extent to which you can focus on
specific events using oc is limited, so it may be
necessary to pipe the oc output into external tools,
like grep, to home in on events related to a certain
node, events of a certain type and so on.

A third approach is to use an external log
management tool to read and analyze event data.
For example, if you use OpenShift on IBM Cloud, you
can take advantage of the native LogDNA integration
to set up log analysis in a few simple steps. LogDNA
enables real-time access to log data, alerting based

12 LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSH IF T 13LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSHIF T

on log contents and the ability to store log data as
long as you want. The latter feature may be
particularly important because OpenShift itself
deletes log data permanently if you delete a
namespace. But if you import log data into LogDNA,
you can store it for as long as you need, even if the
original data source disappears.

To use this option, you must first create a LogDNA
service instance within your OpenShift cluster. You
can do this graphically through the IBM Cloud UI by
following a simple set of configuration steps, or from
the CLI with a command like:

ibmcloud resource service-
instance-create NAME logdna
SERVICE_PLAN_NAME LOCATION

For full documentation of the command, refer to the
IBM Cloud documentation.

You will then need to deploy LogDNA agents to
connect to your OpenShift cluster and forward logs
to IBM Log Analysis.

LogDNA agents can be deployed in OpenShift using
the oc utility. To do this, first create a new
namespace in your cluster to host the agents with a
command such as (here, we’ll create a namespace
called ibm-observe):

oc adm new-project --node-selector=’ ’
ibm-observe

Next, create a service account for the LogDNA
agent:

oc create serviceaccount logdna-agent -n
ibm-observe

Next, configure privileges so that the logdna-agent
service account can create privileged LogDNA pods:

oc adm policy add-scc-to-user privileged \
system:serviceaccount:ibm-
observe:logdna-agent

Next, add a secret for the ingestion key that the
LogDNA agent will use to send logs:

oc create secret generic logdna-agent-key
--from-literal=logdna-agent-
key=INGESTION_KEY -n PROJECT

Finally, deploy LogDNA agents to nodes using
kubectl. Preconfigured YAML files are available for
different public IBM cloud endpoints, so you can use
a command such as the following to deploy an agent:

kubectl create -f https://assets.eu-de.
logging.cloud.ibm.com/clients/logdna-
agent-ds-os.yaml -n ibm-observe

For a full list of available public endpoints, as well as
additional context on deploying LogDNA agents on
IBM cloud, refer to this documentation.

Once fully configured, the LogDNA service instance
and agents provide a LogDNA dashboard within your
OpenShift console. There, you have full access to
LogDNA’s feature set for viewing and managing
OpenShift events and other log data.

Viewing OpenShift API audit logs

To view API audit logs in a generic OpenShift
installation, you must first enable audit logging by
adding an auditConfig stanza to the /etc/origin/
master/master-config.yaml on your master node,
such as the following:

auditConfig:
 auditFilePath: /var/lib/origin/log/ocp-
audit.log
 enabled: true
 maximumFileRetentionDays: 5
 maximumFileSizeMegabytes: 20
 maximumRetainedFiles: 20

The enabled: true parameter turns audit logging on;
other fields define log settings.

Once audit logs are enabled, audit log data will be
managed via systemd and can be accessed by
running journalctl on the node where log data is
stored. Typically, that is your OpenShift master
node. You could also, if you wish, access the audit
log file directly with a command like:

less /var/lib/origin/log/ocp-audit.log

In OpenShift version 4.0 and later, you can also
access audit logs using the oc utility:

oc adm node-logs <node-name>
--path=openshift-apiserver/<log-name>

If you use OpenShift on IBM Cloud, OpenShift’s
native audit logging utilities are replaced by IBM Log
Analysis with LogDNA. Using the same LogDNA
integration process described in the preceding
section of this article, you can configure LogDNA to
collect and analyze audit log data.

This approach offers several advantages over
relying on native OpenShift tooling. LogDNA
provides advanced log analysis features and a
graphical interface that makes it more convenient
to access audit log data. It also aggregates audit
logs alongside other types of log data, providing
admins with the ability to review all logs from a
central location. It makes it possible to store log
data for as long as needed, even if it disappears
from OpenShift itself.

14 15LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSH IF T LOGGING F OR K UBERNE T E S VS. LOGGING F OR RED H AT O P ENSHIF T

Kubernetes Logging vs. OpenShift Logging
At a high level, there are no fundamental differences between logging in Kubernetes and
logging in OpenShift. Both platforms make the same types of log data available, and both
support a range of methods for collecting and interacting with it.

Yet there are more nuanced differences when it comes to logging implementation.
Kubernetes and OpenShift use different tools -- kubectl and oc, respectively -- for making log
data accessible from the CLI. The infrastructure logs associated with Kubernetes nodes may
vary more widely than those for OpenShift nodes. The latter platform runs only on Red Hat
Enterprise Linux servers, and is, therefore, more uniform. Likewise, there is more uniformity
in the way logging is configured by default in OpenShift, a single platform maintained by a
single vendor, than in stock Kubernetes, which is available by many vendors often change
default settings or prefer certain tools over another.

Whether you wish to use OpenShift or any vanilla Kubernetes, you can simplify your logging
strategy by relying on LogDNA to collect logs for you. LogDNA can collect multiple types of
Kubernetes and OpenShift logs -- including application logs, infrastructure logs, and audit
logs -- and make them available in a central location for analysis. It also eliminates the need to
work with clunky CLI tools, or master the differences between kubectl and oc, to interact with
log data; instead, LogDNA provides a rich graphical interface for managing logs.

In addition, deploying the LogDNA agent is very simple, especially on platforms like IBM Cloud,
which offers native integration. With just a few commands or clicks of the mouse, you can
deploy LogDNA in IBM Cloud to manage all of your Kubernetes and OpenShift logs.

In short, logging for Kubernetes and OpenShift can be complicated -- especially if you rely on
simple methods, such as viewing logs on the command line, that were never designed to be
scalable or to allow you to compare data across logs. But logging on these platforms doesn’t
need to be hard. By adopting a comprehensive log management tool like LogDNA, you can
meet all of your logging needs for Kubernetes and OpenShift -- not to mention virtually any
other modern platform -- in a scalable, simple way.

CONCLUSION ABOUT LOGDNA

LogDNA is a centralized log management solution that gives DevOps teams control of their data
and allows them to gain valuable insights from their logs.

LogDNA was brought to life by three-time co-founders Chris Nguyen and Lee Liu and included
in the Winter 2015 batch of Y Combinator. In 2018 LogDNA partnered with tech giant, IBM, to
become the sole logging provider for IBM Cloud.

This past year, the company was named to the Enterprise Tech 30 list, the Forbes Cloud 100
Rising Stars list, the Top 25 Enterprise Software Startups to Watch in 2020 list, and the CRN 10
Hottest Cloud Startups of 2020 list, and received the 2020 IBM Cloud Embed Excellence Award.

Thank You
Sales Contact:
Support Contact:
Media Inquiries:

outreach@logdna.com
support@logdna.com
press@logdna.com

