
Kubernetes Service Mesh: How To Set
Up Istio
Kubernetes Networking

By Mike Mackrory
• Published on February 12, 2021 • Last updated December 7, 2021
In this article, you will learn how to set up Istio as a Kubernetes service mesh using a
free Platform9 Kubernetes account.

Overview
This article will cover:

○ Quick Introduction to Kubernetes Service Mesh and Istio
○ Pre-requisites
○ Installing Istio as a Kubernetes service mesh
○ Deploying a BookInfo Application on top
○ Managing Ingress
○ Monitoring the application

https://platform9.com/blog/category/kubernetes-networking-articles/
https://platform9.com/blog/author/mike-mackrory/
http://platform9.com/signup-flow/
https://platform9.com/blog/kubernetes-service-mesh-how-to-set-up-istio/#what
https://platform9.com/blog/kubernetes-service-mesh-how-to-set-up-istio/#getting
https://platform9.com/blog/kubernetes-service-mesh-how-to-set-up-istio/#installing
https://platform9.com/blog/kubernetes-service-mesh-how-to-set-up-istio/#deploying
https://platform9.com/blog/kubernetes-service-mesh-how-to-set-up-istio/#managing
https://platform9.com/blog/kubernetes-service-mesh-how-to-set-up-istio/#monitoring

Quick Introduction to Kubernetes Service Mesh and
Istio
One of the challenges with a highly dynamic microservices architecture is creating and
maintaining connections. As pods are updated, added, and removed, you need a
mechanism to identify each pod and enable communication between them and other
pods in the cluster.

A service mesh is one way of managing the communications within your cluster.
Network proxies are attached to each application container using the Sidecar pattern.
Together these proxies operate and monitor communication within the Kubernetes
cluster, and this is the service mesh. The service mesh manages security, works to
optimize network performance within the cluster, and reports on the state of networking
within the Kubernetes cluster. In a previous article, we provided a detailed comparison
of various Kubernetes service mesh options, specifically Istio, Linkerd, and Consul.

Istio is an open-source, platform-independent service mesh started by teams from
Google and IBM in partnership with the Envoy team from Lyft. Istio leverages the
powerful and proven Envoy proxy to provide a stable and secure service mesh for your
Kubernetes cluster. This article will walk through how to deploy, and configure work with
Istio using a free Platform 9 Kubernetes account.

Getting Started
If you want to experience Istio for yourself and work along as we go through this tutorial,
there are a couple of things you’ll need to get started. The first is a free account with
Platform9. The Platform9 Managed Kubernetes Free Tier makes it easy to get started.
The site will guide you through verifying your account, and you should be ready to go in
a couple of minutes.

Get started by creating your free Platform9 Managed Kubernetes
Account
Email Address

Create Free Account

https://www.oreilly.com/library/view/designing-distributed-systems/9781491983638/ch02.html#:~:text=The%20sidecar%20pattern%20is%20a,first%20is%20the%20application%20container.&text=In%20addition%20to%20the%20application,without%20the%20application%20container's%20knowledge.
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://istio.io/latest/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
http://platform9.com/signup-flow/
http://platform9.com/signup-flow/

I’ll be using a virtual machine running Ubuntu 18.04 on my local workstation, and I used
the BareOS instructions from the Quick Setup Guide to set it up and connect it to my
account. The virtual machine needs to be well provisioned. We suggest a minimum of 4
VCPUS, 16 GB of RAM, and 30GB of HDD.

The Quick Setup Guide has instructions for configuring instances with Amazon Web
Services (AWS) and Microsoft Azure. You can also follow the BareOS instructions to
connect to instances running in the Google Cloud (GCP) or other public cloud providers.

Once I had the node created and prepared, I initiated the creation of a single master
cluster. The Platform9 interface is very intuitive and guides you through the process;
however, if you get stuck, the Get Your First Container Running on Kubernetes tutorial
has some useful tips and walks you through the process as well.

Installing Istio as a Kubernetes Service Mesh using
the CLI
The first step is to log into the node and download Istio. We do that with the following
command.

$ curl -L https://istio.io/downloadIstio | sh -
The command above will download the latest version of Istio to the current directory. At
the time of writing, the newest version was 1.8.1. Navigate into the newly-created
directory.

$ cd istio-1.8.1
You’ll see the LICENSE file, bin directory, and a samples directory among the contents.
We need to add the bin directory to our path.

$ export PATH=$PWD/bin:$PATH
When you install Istio, you’re able to choose from several configuration profiles. We’ll be
using the demo profile because it showcases the abilities of Istio with moderate
resource usage. Other profiles are more appropriate for production deployments and
custom configurations.

We’ll use the Istio Command-line Tool (istioctl) to specify the profile and install the
service.

$ istioctl install --set profile=demo -y
The installation may take a few minutes to complete, but ultimately you’ll see output
similar to that shown below.

https://docs.platform9.com/kubernetes/quickstart#bareos-quick-start
https://docs.platform9.com/kubernetes/quickstart
https://docs.platform9.com/kubernetes/quickstart
https://docs.platform9.com/kubernetes/quickstart#bareos-quick-start
https://docs.platform9.com/kubernetes/tutorials-first-container

✔ Istio core installed
✔ Istiod installed
✔ Egress gateways installed
✔ Ingress gateways installed
✔ Installation complete
The final step is to set up a namespace label. When we add this label, we’ll enable Istio
Injection. With this label in place, Istio will automatically inject Envoy sidecar proxies to
newly deployed workloads.

$ kubectl label namespace default istio-injection=enabled
We’re now ready to deploy a sample application and see Istio in action.

Installing Istio using the PMK App Catalog
Another option is to use the PMK App Catalog and the officially supported Helm Chart:
https://artifacthub.io/packages/helm/istio-official/istiod.

We will start out in the Apps section and open Repositories. From here we can add a
repository and attach it to a specific cluster or set of clusters.

In this section we will name the repository and add the URL where the charts are
hosted. In our example we are naming the repository Istio and we are using the official
charts repository URL: https://istio-release.storage.googleapis.com/charts.

https://platform9.com/docs/kubernetes/application-catalog
https://artifacthub.io/packages/helm/istio-official/istiod

Now that we have added a repository we can view it in the Repositories section. This
will show us how many clusters have been assigned to the repository and the type.

If we move back over to the App Catalog section we can see the different charts that
are available. There are four charts available from the Istio repository: base, cni,
gateway, and istiod. We are going to install each.

We will start out with Istio Base. The installation will use the default values, however we
need to name the deployment, select the cluster, and select the namespace. The
istio-system namespace is not created by default, we will need to add it. To do so select
the drop down menu under Namespace and then select “Add new namespace” and
name it istio-system. After creating the new namespace we can select it under the
Namespace section.

Istio CNI is the next chart we will deploy. We are using the default values again, but will
need to name it, select the cluster, and select istio-system as the namespace.

Istio Gateway is next. In this section we need to name the deployment
istio-ingressgateway for the demo to work. We will use the same cluster and

namespace as our other deployments. In the Gateway section you could modify some
of the YAML if you wanted to customize how the gateway works, however for our demo
we are using defaults.

Istio Gateway Reference:
https://istio.io/latest/docs/reference/config/networking/gateway/

The last chart we will install is istiod, the Istio Control Plane. We are using the default
settings and are placing it in the same namespace as the other components.

https://istio.io/latest/docs/reference/config/networking/gateway/

Once we have installed each of the charts we can view them in the Deployed Apps
section under the istio-system namespace. Verify that everything has been deployed
and then move on to the BookInfo demo.

Platform9 Managed Kubernetes App Catalog Reference and Documentation –
https://platform9.com/docs/kubernetes/application-catalog

Deploying the BookInfo Application
Istio comes packaged with several sample applications. We’ll deploy the bookinfo
application using kubectl. The following assumes you’re still in the root directory for the
Istio installation.

$ kubectl apply -f sample/bookinfo/platform/kube/bookinfo.yaml
The YAML configuration file creates several services for us, and we can see a summary
of all the installed services if we run the following.

$ kubectl get services
The output should look similar to the following:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
details ClusterIP 10.21.2.22 < none > 9080/TCP 39s
kubernetes ClusterIP 10.21.0.1 < none > 443/TCP 48m
productpage ClusterIP 10.21.0.74 < none > 9080/TCP 38s
ratings ClusterIP 10.21.1.6 < none > 9080/TCP 39s
reviews ClusterIP 10.21.3.241 < none > 9080/TCP 39s

We also need to ensure that all of the pods are ready to go, as this may take a little
more time. We can see this on our node directly by executing kubectl get pods, or we
can view their status on the Platform9 dashboard.

$ kubectl get pods
We need two (2) of each pod to have a status of running.

NAME READY STATUS RESTARTS AGE
details-v1-558b8b4b76-ck1g5 2/2 Running 0 10m
productpage-v1-6987489c74-b64sn 2/2 Running 0 10m
ratings-v1-7dc98c7588-qb4ng 2/2 Running 0 10m
reviews-v17f99cc4496-7cd47 2/2 Running 0 10m
reviews-v2-7d79d5bd5d-5gz7j 2/2 Running 0 10m
reviews-v3-7dbcdcbc56-k7wh1 2/2 Running 0 10m

Managing Ingress
This configuration creates two resources in the cluster:

● gateway.networking.istio.io/bookinfo-gateway

https://platform9.com/docs/kubernetes/application-catalog

● virtualservice.networking.istio.io/bookinfo

Istio includes an analysis tool that validates the installation. Now with everything we’ve
completed deploying our application, we can use this tool to validate our namespace.

$ istioctl analyze
✔ No validation issues found when analyzing namespace: default
For the next step, we need to determine if the environment has an internal or external
load balancer. Execute the following command.

$ kubectl get svc istio-ingressgateway -n istio-system
In the output, look for the EXTERNAL-IP. If the results show an IP Address or a Host
Name, then you have an external load balancer. If the results show either or , you don’t
have access to an external load balancer. Export the following Environment Variables
(EVs) based on whether you have an external load balancer or not.

External Load Balancer
$ export INGRESS_HOST=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].ip}')
$ export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].port}')
$ export SECURE_INGRESS_PORT=$(kubectl -n istio-system get service
istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].port}')

No External Load Balancer
$ export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
$ export SECURE_INGRESS_PORT=$(kubectl -n istio-system get service
istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')
$ export INGRESS_HOST=$(kubectl get po -l istio=ingressgateway -n istio-system -o
jsonpath='{.items[0].status.hostIP}')

With those EVs set, you can now set your Gateway URL.

$ export GATEWAY_URL=$INGRESS_HOST:$INGRESS_PORT
Execute the following command to get the external address for the BookInfo application,
and paste it into your web browser to access the application.

$ echo “http://$GATEWAY_URL/productpage”

Monitoring Kubernetes and Istio

Finally, as with any complex system, we need to monitor and observe what is
happening. We can monitor different aspects of Istio with Prometheus, Grafana, Jaeger,
and Kiali.

Platform9 Managed Kubernetes Free Tier deploys monitoring with every cluster to
ensure that workloads run with a purpose built metrics platform. Platform9 Monitoring
provides metrics across all nodes in a cluster as well as metrics from the Kubernetes
cluster itself; covering pod metrics, cluster metrics, API Server metrics and OS level
collections. When enabled, Monitoring deploys a pre-configured and integrated
Prometheus, Alertmanager and Grafana that instantly provides insight into every aspect
of the Kubernetes cluster, including a set of rules that fire alerts for the most critical of
Kubernetes infrastructure.

Refer to the Monitoring documentation for more information.

For Kubernetes service mesh specific monitoring, Kiali is especially useful because it
was built for Istio and gives excellent insights into your service mesh, including what
services are attached and how they are connected and performing.

First, let’s install the tool from the sample/addons directory.

$ kubectl apply -f samples/addons
And now, let’s deploy Kiali to view the dashboard.

$ kubectl rollout status deployment/kiali -n istio-system
We can open the dashboard using:

https://prometheus.io/
https://grafana.com/
https://www.jaegertracing.io/
https://kiali.io/
http://platform9.com/signup-flow/
https://docs.platform9.com/v4.5/kubernetes/monitoring-dashboard
https://prometheus.io/
https://grafana.com/
https://docs.platform9.com/v4.5/kubernetes/monitoring-overview

$ istioctl dashboard kiali

Further Reading
For more information on Istio as a Kubernetes service mesh, the latest documentation is
available here.

If you’re looking for more information about service meshes, including tips on selecting
and implementing a service mesh, the following articles have a great deal of helpful
information.

1. Comparing Kubernetes service mesh options and how to migrate between them
2. How to set up Linkerd as a Kubernetes service mesh
3. Top tips for configuring your Kubernetes service mesh
4. Best Practices for Selecting and Implementing Your Service Mesh

Next Steps
In this blog, we walked through a tutorial on setting up Istio as a Kubernetes service
mesh using a Platform9 Managed Kubernetes Free Tier account. We hope you found
this blog informative and engaging. For more reads like this one, visit our blog page or
subscribe for up-to-date news, projects, and related content in real-time.

https://istio.io/latest/docs/
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://platform9.com/blog/how-to-set-up-linkerd-as-a-service-mesh-for-platform9-managed-kubernetes/
https://platform9.com/blog/kubernetes-service-mesh-top-tips/
https://platform9.com/resource/best-practices-for-selecting-and-implementing-your-service-mesh/
http://platform9.com/signup-flow/
https://platform9.com/blog/

