
Using Open Source
in Your Code Base:
A Beginner’s Guide

eBook

Introduction 	 . 3

Open Source Is Everywhere – Even Your Codebase	 . 4

Where Did Open Source Come From?	 . 4

Just How Prevalent Are Open Source Projects in the Real World?	 . 5

But What About Actual Developer Usage of Open Source for In-House Apps?	 . 5

How Is Open Source Used and Distributed?	 . 6

Open Source and You	 . 7

What, How, and Where Open Source Gets Pulled into a Codebase	 . 8

Third-Party Extensions Are the Answer	 . 8

It’s All Based on Open Source	 . 9

How Easy Is It to Find Open Source Modules and Libraries?	 . 9

Why Developers Use Open Source in Their Projects – and How to Manage the Risks	 . 11

Why Add Open Source to Your Codebase?	 . 11

The Drawbacks of Using Open Source Code	 . 12

When and When Not to Use Open Source Code	 . 13

How Hackers Can Infect Open Source Codebases	 . 14

Hacker Infiltration of Open Source Projects	 . 15

Malicious Insiders	 . 15

Malicious Code’s Impact on Third Parties	 . 16

Protecting Against Hacks in Open Source	 . 16

Conclusion: Securing Your Open Source Code 	 . 17

Table of Contents

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 3

Introduction

Yet open source code also poses significant security, compliance, and other
risks. While these risks can certainly be managed, some organizations aren’t
even fully aware that they exist, let alone prepared to respond to them.

If your organization uses open source code in any way, this eBook is for you.
The following chapters explain what developers and business stakeholders
need to know about incorporating open source into their own applications in
order to do so securely.

As you’ll see, virtually every organization can – and in many cases should –
take advantage of open source as a way to build out its codebase. But they
must implement safeguards that allow them to manage the risks that come
with open source, and ensure that those risks are outweighed by the benefits
that open source offers.

There are excellent reasons to incorporate open source code
into your organization’s own applications. It’s usually free. It
can help you implement functionality faster than you could if
your developers had to write all of the code from scratch. It’s
often supported by a flourishing open source community that is
constantly updating and improving the code.

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 4

To understand the risks associated with open source code, you must start by understanding
just how widespread open source code is, even within organizations that don’t think of
themselves as participants in the open source community.

In his 2011 article for The Wall Street Journal, Marc Andreessen wrote that “software is
eating the world.” This, he explained, is because of the amazing pace of innovation in the
tech industry, which is due in no small part to the open source movement. Open source
has grown up alongside the rest of the technology market, and it is the reason why so
many providers can create such rich services at such low costs. In the 10 years since
he wrote his famous catch phrase, the industry has embraced open source to an even
greater degree. And even the largest and oldest companies that once called open
source “a cancer” have now fully embraced the movement – including Microsoft.

Where Did Open Source Come From?
Open source grew out of the free software movement, which can trace its roots back to the
innovative culture that surrounded electronic and computer hobbyists in the 1970s. This was
the same era that gave birth to many technology giants, including Apple and Microsoft. The
free software movement was a rebellion against those giants who sought to control their
software and limit the rights of its users to modify and redistribute the software as they saw
fit. The “free” in the “free software movement” wasn’t about offering products free of cost –
it was about “free” as in freedom. In other words, you could charge for your program, but
your source code had to go along with it, and the end users could do with it as they pleased.

Open Source Is Everywhere –
Even Your Codebase

https://a16z.com/2011/08/20/why-software-is-eating-the-world/
https://a16z.com/2011/08/20/why-software-is-eating-the-world/
https://www.theregister.com/2001/06/02/ballmer_linux_is_a_cancer
https://www.zdnet.com/article/ballmer-i-may-have-called-linux-a-cancer-but-now-i-love-it/

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 5

The realities of “free software” didn’t always align well with the
ideology of the Free Software Foundation, however, and many
wanted to remove the focus (implied or real) away from cost entirely.
In 1998, Christine Peterson coined the term “open source” to place
the emphasis on source code instead, and to reify that users should
have the freedom to run, modify, and share software. Since 1998,
the open source movement has far surpassed the FSF in size and
influence, and the sheer number of open source organizations is
testament to that fact. For a project to be truly open source, it must
use one of the approved open source licenses maintained by the
Open Source Institute.

Just How Prevalent Are Open Source Projects
in the Real World?
To get an idea of just how prevalent open source is (and how
it continues to move into spaces traditionally dominated by
proprietary software), look no further than the web browser
you’re using right now. Firefox is open source. Google Chrome
and Microsoft Edge are open source. Even Opera and Safari are
based on open source projects.

Web browsers are also great examples of single open source
projects that can be supported by multiple companies shipping
their own products. For instance, Chromium is an open source
project that was started by Google to be the base for Chrome.
Chromium is now used at the core of Opera, Microsoft Edge,
and dozens of other web browsers you’ll likely never hear about.

Open source also dominates at the infrastructure layer of
the entire technology industry, with over 70% of web facing
computers running open source web servers. And you can’t
forget the poster child for open source, the Linux kernel, which
is currently deployed on billions of devices world wide – and
that’s just Android smartphones. That doesn’t even count its
dominant position in the millions of servers at organizations
like Facebook.

But What About Actual Developer Usage
of Open Source for In-House Apps?
You will rarely find true developers who would not love to
have the time to build everything that their applications need
to function properly. The code that they build is a source of
pride. Unfortunately, the reality is that developers are hired by
businesses to solve problems, not to build their utopias. So
whenever functionality is available that will fulfill their needs,
they will use it. This can range from solutions like Drupal (a
web content management platform that frees developers to
focus on content and integrations) to development frameworks
like Spring (which allows a developer to start coding business
functionality instead of “plumbing”). In most cases, though,
developers use a library to add desired functionality, such
as adding a pre-built calculator to a website.

https://www.fsf.org
https://opensource.com/resources/organizations
https://opensource.org/licenses
https://news.netcraft.com/archives/2021/02/26/february-2021-web-server-survey.html
https://news.netcraft.com/archives/2021/02/26/february-2021-web-server-survey.html

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 6

How Is Open Source Used and Distributed?
There are many different ways in which open source projects can
be consumed. The following are some of the most common ways that
they are introduced by developers, along with a brief description of
how they flow through a DevOps or NoOps pipeline.

Source code is always available if developers want to build a component
on their own, but in most cases, they download a pre-assembled
component that is ready for use.

Module: A module is the basic building block of any application. It
is usually a single file that contains multiple functions. A calculator
would be a great example. In this case, the functions would be: add,
subtract, multiply, and divide.

Class: A class is a module that can be instantiated into an object.
This means that it can keep state on its own. One example of this
would be a calculator that can keep a running subtotal.

Package: This can mean different things in different contexts, but
in many cases, it just refers to the component as you downloaded
it. Strictly speaking (especially for languages like Python and Java),
a package is a collection of modules or classes that share the same
name space. In Python, packages are hosted in a single directory
with a shared __init__.py file, for example, which ensures that they
all start in a consistent way.

Library: Libraries are probably the most common way
in which application developers leverage open source
projects. A library is composed of modules, classes,
and even packages that together create a group of
complementary functionality. A great example of this
is jQuery, which is used by 73% of JavaScript-based
websites. This simplifies common functionality, such
as event handling and loading data from external
services.

Framework: At their core, frameworks are simply
collections of libraries that have been pieced together
to provide a starting point for developers. Frameworks
usually rely on libraries from multiple other open
source projects, and they are often opinionated,
meaning that they want things done in a specific way.
As long as what you need to do falls within those
preset guidelines, everything is fine. The reason
why so many frameworks exist is that different
organizations have different styles, and not everyone
likes to work the same way. For example, the top
JavaScript frameworks all originated from different
companies: Bootstrap came from Twitter, React came
from Facebook, and both Angular and Polymer came
from Google.

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 7

Open Source and You
If your company does any in-house software development –
meaning you build your own applications, integrations, websites,
or any other kind of software resources – it’s nearly certain that
you are utilizing at least some open source code.

So you need to answer a few questions: Do you have an inventory
of open source code? Do you know which versions of which open
source components you use? Do those versions have known
security vulnerabilities? Which software licenses are you including,
and what kind of exposure does that create for you? The GPL and
Apache licenses (two of the most popular open source licenses) can
have very different impacts on how much of your own code may end
up being open source if you ship applications to consumers.

All of these questions can be answered by using a software
composition analysis (SCA) tool, which can identify, categorize,
and report on the open source code that has been imported by your
development team. Introducing SCA functionality into your DevOps
toolbox will enable you to flag known critical security defects and
then use those as part of the deployment criteria for production. An
SCA tool like Checkmarx’s could save your organization from hitting
the news cycle for the wrong reasons.

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 8

Now that you know how pervasive open source is, let’s dive deeper into how developers often
incorporate open source code into applications that they are building.

The vast majority of software developers in the industry today are paid to solve business
problems. Regardless of whether they work for small independent software vendors or Fortune
500 companies, solving such problems is now one of their primary responsibilities. Given the
time and the opportunity, many software developers would write as much functionality into their
applications as they possibly could from scratch. However, that can be very time consuming:
first, they have to debug and fix it, and then, they have to maintain it (or better yet, enhance it).

Third-Party Extensions Are the Answer
To increase productivity and save a great deal of time, developers often use code written by
third parties rather than rebuilding the same generic functionality across multiple applications.
While there has always been a market for commercially licensed and supported extensions
(including modules, packages, libraries, and frameworks), the vast majority of the third-party
code used today is open source. This means that there is no marketplace and no purchase
order; rather, a few extra lines of someone else’s code are simply imported into the software.

This can cause problems with licensing and disclosure if it is not accurately tracked and
monitored. That is why software composition analysis (SCA) products are worth their weight
in gold. These solutions find all of the third-party packages that are in use, then identify the
corresponding licenses. They can even show if they are out of date or if known security
vulnerabilities have been reported against them.

What, How, and Where Open Source
Gets Pulled into a Codebase

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 9

It’s All Based on Open Source
Even the lowest level of an application stack (the language and runtime
engine) is often open source. The most popular languages in use these
days are all open source, or at least have open source distributions. Go,
Python, PHP, Ruby, and JavaScript are all open source by default, and
even languages that are traditionally commercially supported have
open source distributions like OpenJDK (for Java) and gcc (for C/C++).

After you’ve chosen your language, you’ll likely want to ensure that you
have some structure in place so that you won’t need to declare all the
basic functionality like dependency management and data management.
Well over half of all Java applications use the Spring framework as
their starting point. PHP uses Laravel, while JavaScript uses React and
Bootstrap, among others.

Frameworks and languages form a solid foundation for any application,
but the bulk of open source influence can be found in the staggering
number of modules that are available as packages and libraries which
can be easily integrated into applications.

How Easy Is It to Find Open Source Modules
and Libraries?
Any web search for any type of functionality will often return results that
link to places like GitHub, GitLab, PyPI, and many other sites. So how do
you find what you need?

Let’s say that you want to make a particular form a little more secure by
including a CAPTCHA. If you don’t know where to start, just head over
to your favorite search engine and enter, “captcha library for Python.”

In our case, the first result is an open source library that can be
installed via pip (pip is the standard utility used in the Python
ecosystem to install modules).

Installing this module is as simple as typing, “pip install captcha.”

Now, with just a couple lines of code, a whole new set of tested
and proven functionality is added to the application in minutes.

from captcha.image import ImageCaptcha

image = ImageCaptcha(fonts=[‘/path/A.ttf’, ‘/path/B.ttf’])

data = image.generate(‘1234’)

image.write(‘1234’, ‘out.png’)

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 10

For another, more real-world example, let’s say that you have a web application
that needs to be able to pick a date from a calendar. To show you how to do this,
we will use the jQuery library, which has a great deal of functionality and is easy
to use.

The first step is to add the jQuery modules to the web page in question. There are
two stylesheets and two script files that need to be imported. These are added
between the head tags. The next step is to define the datapicker function, which
activates the appropriate pieces of the jQuery library. The final step is to define
where to put it on the page using an input field. The code looks like this:

<!doctype html>

<html lang=”en”>

<head>

 <meta charset=”utf-8”>

 <meta name=”viewport” content=”width=device-width, initial-scale=1”>

 <title>jQuery UI Datepicker - Default functionality</title>

 <link rel=”stylesheet” href=”//code.jquery.com/ui/1.12.1/themes/base/

 jquery-ui.css”>

 <link rel=”stylesheet” href=”/resources/demos/style.css”>

 <script src=”https://code.jquery.com/jquery-1.12.4.js”></script>

 <script src=”https://code.jquery.com/ui/1.12.1/jquery-ui.js”></script>

 <script>

 $(function() {

 $(“#datepicker”).datepicker();

 });

 </script>

</head>

<body>

<p>Date: <input type=”text” id=”datepicker”></p>

</body>

</html>

The finished web page looks
like this:

When you select the date
input, it will present a
calendar. You can stylize it,
of course, but this example
shows the simplicity that
open source libraries can
provide:

As this example shows, it’s very easy to add open
source to your codebase. And it’s very likely that your
developers are using open source in ways like this,
even if they don’t otherwise make use of open source
applications.

As we’ll see later, even basic and minimal use of open
source code introduces potential risks. Staying ahead
of them requires visibility into how and where your
organization borrows from open source projects.

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 11

The previous two chapters explained how developers add open source to their projects, but they
only touched briefly on why developers do this. This chapter fills that gap by focusing on the why
of using open source code, and explaining when it does and doesn’t make sense to do so.

If you’re a developer, incorporating open source code into your project is like ordering a meal
kit instead of cooking from scratch. It saves you some time and effort. But it also reduces your
level of control over the final product, and it could lead to issues that you don’t foresee.

That’s not to say you shouldn’t use open source (or, for that matter, meal kits). There are lots
of great reasons for developers to take advantage of open source within their projects. But
it’s important to be aware of the potential drawbacks and risks, and to have a plan in place
for addressing them.

Why Add Open Source to Your Codebase?
Most organizations with in-house development teams maintain their own code bases.
Their developers write most of the code for those codebases themselves.

However, they may choose to add third-party open source code to their codebases, for
several reasons.

The most obvious is that it’s often faster and easier to incorporate a feature or build an integration
using third-party code than it is to write it yourself. Why spend a week building out a new service
from scratch when you can grab the code you need from an open repo on GitHub? Why reinvent
the wheel if someone already invented it for you and wants you to use it for free?

Why Developers Use Open
Source in Their Projects –
and How to Manage the Risks

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 12

Incorporating open source can also be handy in situations where an
in-house development team doesn’t have the expertise necessary to
implement a certain feature or service itself. Maybe you need to add
a new feature to a legacy application written in a language that no one
knows well, for example, so you decide to pull the code you need from
an open source project instead of teaching yourself the language.

Developers may also choose to work with open source code for reasons
that could be described as political. Borrowing code from third-party
open source projects can help build bridges with those projects.
Contributing code back builds even stronger bridges. If a company
wants to establish itself as a participant in the ecosystem surrounding
a certain open source project, in other words, working with its code
can be a way to do so.

The Drawbacks of Using Open Source Code
While the reasons for adding open source code to a company’s internal
code base are sound, there are potential drawbacks to be aware of.

One is that, to quote engineer Steve Belovarich, “when you adopt open
source tools you often don’t know what you are getting.”

In other words, when you use open source code, you may understand
approximately what it does and how it fits within your codebase. But
unless developers spend days poring over each line of the code – which
is unlikely because that would defeat the purpose of borrowing code in
order to save time and effort – the team won’t fully understand exactly

how the open source code works. That’s a risk, because it
means the business becomes dependent on something that
its developers don’t fully understand.

Reusing open source code may also lead to licensing problems.
There are dozens of different open source licenses, all of which
have their own rules on how open source can be incorporated
into other codebases. Some licenses let developers do anything
they want with open source code. Others require attribution
of the original authors of the code. Some impose restrictions
in situations where the code is used publicly, but not if
organizations only use it internally.

Because of this complexity, it’s easy to run into licensing issues
by reusing open source code in a way that violates whichever
license governs it. And while it can be easy to assume that
the licenses won’t really be enforced, that’s not always the
case. Businesses face a real risk if they borrow open source
code willy-nilly without understanding the licensing terms,
and without keeping track of where the code exists within
their own codebases.

Likewise, security issues can be a concern when using open
source code. Open source is no less inherently secure or
insecure than proprietary code. But when developers use open
source without fully understanding how the code works, and
without knowing which vulnerabilities may be lurking within it,
they risk introducing security problems into their codebases.

https://dev.to/steveblue/the-hidden-cost-of-don-t-reinvent-the-wheel-1e3l
https://www.omm.com/resources/alerts-and-publications/alerts/client-alert-court-upholds-enforceability-of-open-source-licenses/
https://www.omm.com/resources/alerts-and-publications/alerts/client-alert-court-upholds-enforceability-of-open-source-licenses/

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 13

When and When Not to Use Open Source Code
Deciding whether or not to make use of open source code, then,
boils down to assessing whether the benefits outweigh the risks –
as well as your organization’s ability to control those risks.

If adding open source to your codebase will save a significant
amount of time, effort, and money by significantly reducing the
amount of original coding the development team has to perform,
it’s probably worth it. It may be less so if it will only save developers
from a day’s work.

Likewise, if you trust the source of the code and you’re confident
that it is secure, it makes more sense to lean on it. It’s generally
better to use open source code from a major project than it is to
pull code from a random GitHub repository.

Most important of all is the level of visibility and control that
developers have over the source code they use. Regardless of
how much they trust the original authors of the code or how well
written the code is, it’s impossible to have full confidence that
it won’t introduce security, licensing, or other issues without
performing your own vetting.

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 14

As the preceding chapters explained, there are a variety of ways to add open
source to a codebase, and many good reasons for doing so.

But there are also critical security risks associated with this practice. Again,
you can manage these risks, but only if you understand how hackers can use
open source code as a vector for causing harm to your organization.

Most open source projects welcome contributions from anyone. That’s one
of the key strengths of open source development as a whole – the fact that
any developer can help build it.

But this permissiveness can also breed risks. If open source projects don’t
adequately vet new contributors and validate their code, their open-door
policies can become a vector for hackers to sneak malicious code into their
repositories. This is bad not just for the projects themselves, but also for
any third parties that incorporate vulnerable open source code into their
own codebases.

Here’s a look at how hackers can exploit open source projects, and what
that means for developers who depend on open source code to help build
their own projects.

How Hackers Can Infect
Open Source Codebases

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 15

Hacker Infiltration of Open Source Projects
Unlike most proprietary codebases, which are not accessible to the
public at large, open source projects typically allow anyone to contribute
code to them, and even go out of their way to make it easy to do so. After
all, part of the reason why platforms like GitHub have become massively
popular for hosting open source projects is the ease with which users of
those platforms can access open source code, modify it or extend it, and
push their changes back into the main codebase.

This doesn’t mean that anyone can instantly contribute any code to
an open source codebase without any sort of vetting process in place.
Most projects carefully review proposed contributions from coders who
haven’t worked with the projects before to ensure that the contributions
meet the project’s standards for code quality and security. They also
look at the backgrounds of the new contributors to check that they
have an established track record of solid contributions and coding
experience. This vetting process helps prevent bad code from sneaking
into codebases.

However, the rigor of the vetting process for new contributors can vary
widely from one open source project to another. Large, mature projects
led by veteran coders tend to enforce high standards. But smaller
projects, or those that are not managed well, may do a poorer job
of keeping track of who they allow onto their teams of contributors.

That means that coders with malicious intent may be able to slip past the
gatekeeping process that is supposed to protect open source projects.

Keep in mind that hackers need not contribute plainly malicious code in
order to infiltrate open source projects in this way. They could merely

propose a change that creates a configuration condition (like
improper input validation or an overlooked bounds check) that
enables an exploit against the application.

This means that malicious contributions aren’t always easy
to detect. Even experienced coders may fail to notice the
vulnerabilities that hackers have intentionally buried within
code they propose to contribute to an open source project.

Malicious Insiders
Complicating matters further is the fact that, once a developer
has been accepted as a trusted member of an open source
community, his or her activity within the codebase may not
be monitored very closely.

That means that a hacker could potentially make valid
contributions initially in order to gain the trust of peers, then
start adding malicious code to the codebase without being
closely watched.

If you think scenarios like this sound rare, think again. GitHub
reports that 20 percent of the bugs within code stored on its
platform were planted by malicious actors. Similar issues
have occurred on the NPM repository, where hackers
uploaded malicious open source applications with names
similar to legitimate ones in order to trick developers into
using them.

https://www.zdnet.com/article/open-source-software-how-many-bugs-are-hidden-there-on-purpose/
https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 16

Malicious Code’s Impact on Third Parties
It’s not just developers and users of the open source tool or platform
itself who are harmed when hackers find their way into an open source
project. Third-party developers who incorporate code from an open
source project into their own, internal codebases are also at risk.

In other words, if you are building an application or tool for use inside
your own company, and you import some open source code to help
implement it, you run the risk that an exploit or vulnerability lurking
inside that code will make its way into your own application.

Protecting Against Hacks in Open Source
What can you do to protect your business from the risks associated
with hacker infiltration of open source codebases?

You could choose not to use open source, of course, but that would
mean shooting yourself in the foot. Open source is a great resource
that, when used properly, allows developers to build applications faster
and more cost-effectively than they could if they had to implement
everything themselves.

A better approach is to use open source when you need it, but to be sure
that you get open source code from trusted, mature projects. As noted
above, these projects are more likely to perform the thorough vetting
necessary to keep hackers out of their codebases.

US ING OPEN S OURCE IN YOUR CODE B A SE : A B EG INNER ’ S GUIDE 17

This eBook has highlighted several core truths about the way organizations use
open source:

Virtually all organizations that develop software of any kind rely, in part, on open
source code.

Many organizations, however, aren’t fully aware that they are using open source
code extensively. Or, if they are aware, they often have little visibility into which
code they are using and how they are using it.

Open source code varies widely with regard to how secure it is and what the
implications of its licensing terms are.

Without the ability to know when and how you are using open source, you run
the risk that the open source code you rely on introduces security, compliance,
licensing or other risks to your organization – and you may not even know those
risks exist.

In short, we’ve learned in the preceding chapters that
open source carries risks, and you can only manage
those risks if you know how and where you are using
open source code.

This is why organizations that use open source in
any way should leverage Software Composition
Analysis (SCA) tools, like Checkmarx. Checkmarx
allows you to scan your entire codebases to build
an inventory of areas that include open source
components – even if your developers have modified
those components since originally borrowing them
from open source projects. It also identifies where the
open source code came from, and which security or
licensing issues are associated with the code.

With a tool like Checkmarx, you can take full advantage
of open source while enjoying the confidence that
your applications and business are safe from the risks
that open source can introduce. In other words, you
can have your cake and eat it too – you get the fast,
efficient development operations that open source
enables, while still keeping your code secure and
compliant.

Conclusion: Securing
Your Open Source Code

Contact us
for a Free
Demo! Checkmarx is constantly pushing the boundaries of Application Security Testing to make security seamless and simple

for the world’s developers while giving CISOs the confidence and control they need. As the AppSec testing leader, we
provide the industry’s most comprehensive solutions, giving development and security teams unparalleled accuracy,
coverage, visibility, and guidance to reduce risk across all components of modern software – including proprietary
code, open source, APIs, and Infrastructure as code. Over 1,600 customers, including half of the Fortune 50, trust
our security technology, expert research, and global services to securely optimize development at speed and scale.
For more information, visit our website, check out our blog, or follow us on LinkedIn.

©2021 Checkmarx Ltd. All Rights Reserved.

https://www.checkmarx.com/request-a-demo
https://www.checkmarx.com/request-a-demo
https://www.checkmarx.com/request-a-demo
https://www.checkmarx.com
https://www.checkmarx.com/resources/blog
https://www.linkedin.com/company/checkmarx

