
T H E D E V O P S J O U R N E Y :
F R O M W A T E R F A L L T O
C O N T I N U O U S D E L I V E R Y

Implementing an agile, DevOps-centered workflow involves several

distinct steps. In other words, the process required to evolve from

traditional, “waterfall”-style development to continuous delivery of

software is a journey, not something that organizations can implement

all at once. While many organizations today have begun the DevOps

journey by adopting some tools and methodologies that promote

agility, a lack of fully automated testing often prevents them from

completing it. The integration of efficient automated testing into

workflows is therefore a crucial step for organizations seeking to

achieve full agility and complete the DevOps journey.

WHITE PAPER

3 Executive Summary

3 Stages of agility

3 Waterfall

3 Fast waterfall

4 Continuous integration

4 Continuous delivery

5 Moving down the trail with automating testing

5 Increasing testing agility

5 Automated testing

5 Cloud-based testing

6 Parallel testing

6 Shift-left testing

6 Automated testing is not a choice --

it’s a necessity

6 Web apps: From waterfall to

 continuous delivery

7 Why automated testing is uniquely

important to DevOps

8 Conclusion

TABLE OF CONTENTS

EXECUTIVE SUMMARY

DevOps. Agility. Continuous delivery. These are the buzzwords of the new

software development and testing landscape. They describe some of the core

values and processes that characterize an efficient, modern workflow.

But they are also terms that can be misleading. That’s because they’re easy

to conceptualize as qualities or values that an organization either has or does

not have. In many common depictions, a company either “does” DevOps or it

doesn’t. It’s agile or it’s not. It delivers its software continuously, or it adheres

to archaic, staccato delivery schedules.

In reality, however, the DevOps landscape is not black and white. Adopting

DevOps is a journey, not a choice that an organization opts to make or not,

and implements all at once. That journey entails various steps and stages.

This whitepaper explains the DevOps journey and identifies the phases that

the typical organization crosses as it adopts DevOps practices. It highlights

the various degrees of agility associated with each stage, then discusses the

barriers, including manual and sequential testing, that organizations have to

overcome in order to progress further toward the endpoint of the DevOps

journey, which means reaching full continuous delivery.

STAGES OF AGILITY

Because modern software delivery chains involve so many tools and

processes, it is best to think of the DevOps journey as a continuum.

Organizations progress slowly from one phase to the next. They do not

make the jump between phases overnight.

That said, it is possible to identify four main stages of agility within the DevOps

continuum. They include:

• Waterfall. Organizations with a waterfall delivery process are living in the

yesteryear of software development. They write, test and deliver code

according to a sequential staccato rhythm. Their programming, Ops and

quality assurance teams operate in silos, without collaborating with one

another. They rely on manual processes, including manual testing.

• Fast waterfall. Organizations that have implemented a certain degree of

agility are in the fast waterfall stage. They still deliver software sequentially,

but they take advantage of tools, such as GitHub, that introduce a certain

degree of automation and scalability to their workflow. They also do some

amount of automated testing, but constraints remain; for example, they
Learn more at saucelabs.com

3

may not take advantage of parallel testing, which adds a magnitude of

efficiency to automated testing.

• Continuous integration. This stage of the DevOps journey is hallmarked

by the use of continuous integration platforms, such as Jenkins, CircleCI

and TeamCity. These tools do much to automate the process of building

software. They also provide a framework that helps developers, Ops and

quality assurance teams to operate in sync. However, running

a continuous integration server and eliminating collaboration silos within

the organization does not guarantee full agility. That requires a fully

automated and optimized testing process. It also involves next-generation

approaches to deployment, such as the use of scripted infrastructure.

• Continuous delivery. This is the final phase of the DevOps journey.

Organizations that have achieved continuous delivery have adopted a fully

automated development process, including automated testing at high

frequencies. In addition, their development, Ops and quality assurance

teams function as a single group, constantly in sync with one another.

Waterfall Fast Waterfall Continuous
Integration

Continuous
Delivery

Process
Traditional

sequential

design model

Initial adoption

of Agile

Full adoption

of Agile

Fully automated

Development process

Tools
Manual testing

dominates

Automated testing

begins

Automated testing

dominates; manual

only for debugging

Automated testing

core to Dev. &

Delivery

People
Dev. & QA

completely

separate

Dev. & QA start

communicate

Dev. and QA

collaborate closely

Dev. and QA

functions merge

Again, in practice, these stages stretch across a continuum. The line

separating each phase from another is blurry. In addition, the specific

characteristics associated with each phase will vary from organization to

organization. There is no single tool or practice that necessarily demarcates

one phase of the DevOps journey from another.

In general, however, these stages characterize the major landmarks by which

a company passes as it makes the long journey from traditional software

delivery to continuous delivery.

Learn more at saucelabs.com

4

Description of the four major stages software development groups go through on their journey to

Continuous Delivery.

MOVING DOWN THE TRAIL WITH AUTOMATING TESTING

Progressing from one phase to another within the DevOps spectrum requires

simply identifying the parts of the delivery chain that are not yet as agile as

they could be, then making them more agile.

In many cases, software testing is high on the list of barriers to agility that

organizations could easily address. Yet it is also likely not the first place that

DevOps teams think to look when they seek ways to increase agility. In fact,

many organizations may believe they are already fully agile because they have

adopted other DevOps tools and overlook the pitfalls of inefficient testing.

This tendency is not surprising. After all, the most popular DevOps tools that

have appeared to date -- continuous integration servers, code repositories,

containers and the like -- focus primarily on making the production,

management and delivery of source code more efficient. They do little to

address the testing piece of the puzzle.

As a result, organizations that have embarked on the DevOps journey by

adopting tools related to development, delivery and production are likely to

find their agility constrained by a lack of automated testing -- even if they

are not aware of it. For these organizations, improving testing efficiency is

an obvious and easy way to grow more agile.

INCREASING TESTING AGILITY

Fortunately for such organizations, a number of DevOps-inspired tools and

methods exist to improve the efficiency of the testing part of the delivery

pipeline. They include:

• Automated testing. Automated tests are a sine qua non of an efficient,

DevOps-based delivery pipeline. Manual tests impose enormous

bottlenecks on an otherwise automated workflow, since they require the

software development and delivery process to pause whenever tests need

to be performed. Manual testing is also not scalable because the number

of manual tests that an organization can perform is limited by the size of

the staff on hand.

• Cloud-based testing. Moving testing to the cloud increases agility in two

main ways. First, it makes tests more scalable, since it is much easier and

faster to acquire additional cloud-based infrastructure than it is to expand

on-premise infrastructure. Second, cloud-based testing can improve test

speed by providing access to more resources than those available locally.

Learn more at saucelabs.com

5

• Parallel testing. Rather than running tests sequentially, organizations can

become more agile by running them in parallel when possible. Parallel

tests mean that the full test suite is completed faster. They also prevent

hold-ups in the delivery process, which would occur if a problem with

one sequential test delays other tests.

• Shift-left testing. Even if organizations have already adopted automated

tests, they may be able to derive additional agility by shifting those tests

to the left. In other words, they should test earlier in the development and

delivery process, so that problems can be discovered and fixed sooner.

That leads to faster overall delivery while also increasing the DevOps

team’s ability to create and test new features without delaying the

delivery pipeline.

These strategies for improving agility by making testing more efficient have

so far not been a central part of the DevOps conversation. But they constitute

simple, low-cost ways of growing more agile in order to work toward the goal

of full continuous delivery.

AUTOMATED TESTING IS NOT A CHOICE -- IT’S A NECESSITY

On that point, it’s worth noting that, in order to be fully agile, automated

testing is not simply a choice, but an absolute necessity. Even if an

organization has in place all of the other tools and practices that constitute

a DevOps delivery chain, inefficient testing will keep complete agility far

out of reach.

That means that automated tests, combined with other methods of

optimizing testing as outlined above, are not just one of many optional tools

that an organization could potentially choose to include in its workflow

if it wishes to maximize agility. Automated tests are instead an essential

ingredient.

Web apps: From waterfall to continuous delivery

To understand why automated testing is so essential to achieving full agility,

consider the example of an organization that has been developing a Web app

for the past decade. The organization has done much over that time to take

advantage of DevOps-inspired tools and techniques. It has moved its code to

a GitHub repository. It has adopted Jenkins, the continuous integration tool,

to automate builds. It has assured that the programmers who write the app’s

code can easily communicate with the QA team that tests it and the IT Ops

staff who deploy it.
Learn more at saucelabs.com

6

This organization, in other words, has completed a large portion of the

DevOps journey. But it lacks one crucial DevOps resource, which is

automated testing. Instead of fully automating its tests, the organization relies

mostly on manual tests. It scripts some tests, but other tests are performed on

an ad-hoc basis, and the team has not integrated automated testing into the

build process.

The lack of full test automation means that delivering quality-assured versions

of the new app to users on a rapid basis remains impossible. This undercuts

the value of the other changes that the organization has implemented to

its development and delivery pipeline for the Web app. Those changes

have optimized development and deployment, but without an automated

testing procedure, delivering the app to users on a continuous basis is not

possible. The result is a workflow that is much more agile than it was before

the organization began its DevOps journey, but has not yet reached the

continuous delivery stage.

Fortunately, taking the next DevOps step in the scenario described above is

easy enough. The organization needs simply to build fully automated testing

into its workflow. One obvious way to do that, based on the organization’s

needs and the tools it already has in place, is to take advantage of tools like

the generic Selenium plugin for Jenkins, which would allow the organization

to make automated tests a part of the continuous integration workflow

by having Jenkins run them as part of builds. That would add a significant

amount of agility.

However, the organization could gain even more agility by leveraging the

optimized Jenkins plugin from Sauce Labs, which provides broader coverage

and delivers faster test results by taking advantage of cloud-based testing.

This tool enables developers to manage, execute and review test results all

from within Jenkins, making them more efficient.

WHY AUTOMATED TESTING IS UNIQUELY IMPORTANT TO DEVOPS

Automated testing’s essential role in achieving continuous delivery makes

automated tests different from many other DevOps tools. For example,

containers are a common part of the automated delivery pipeline, but they’re

not a strict necessity for a fully agile workflow. Depending on the type of app

a company builds, containerizing it in order to make delivery more agile may

not make sense; storage apps, for instance, are generally difficult to run inside

containers.

Learn more at saucelabs.com

7

https://wiki.jenkins-ci.org/display/JENKINS/Selenium+Plugin
https://wiki.saucelabs.com/display/DOCS/Using+Sauce+Labs+with+Continuous+Integration+Platforms#UsingSauceLabswithContinuousIntegrationPlatforms-UsingSauceRunnerwithContinuousIntegrationPlatforms

As another example, GitHub is a massively popular way to host code and track

changes for DevOps teams. But GitHub is not the only solution of its kind. And

in some cases, especially where development teams are very small, it may be

a poor fit for an agile workflow.

However, any organization that builds software needs to test that software, and

automated testing is the only means of performing such tests in a way that is

efficient and agile. Automated tests are therefore an unusually and absolutely

crucial part of a DevOps delivery chain. They represent a clear resource to adopt

for organizations seeking to take the next step on the DevOps journey.

CONCLUSION

DevOps is a central part of efficient software delivery. Most companies

seeking to keep their users happy, and their developers and admins working

at their best, have already begun the DevOps journey. In order to reach the

continuous delivery stage and achieve full agility, however, companies need

to do more than adopt a handful of DevOps tools or begin speaking

in DevOps-inspired language.

Reaching the final stage of the DevOps journey takes commitment.

Organizations need to overhaul the practices they established in the age

of waterfall development. They also need to ensure that all stages of their

workflow are fully agile, which requires a complete set of DevOps tools. And

while many of the tools that organizations adopt along the DevOps journey

will vary from company to company, automated testing is an essential

resource for virtually any organization that wishes to reach

continuous delivery.

Learn more at saucelabs.com

8

WP-11-082016

Sauce Labs provides the world’s largest cloud-based platform for the

automated testing of web and mobile applications. Its award-winning

service eliminates the time and expense of maintaining an in-house testing

infrastructure, freeing development teams of any size to innovate and

release better software, faster.

Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Triage Ventures and the Contrarian Group. For more information,

please visit saucelabs.com.

SAUCE LABS INC. 539 BRYANT STREET #303 SAN FRANCISCO, CA 94107 USA

ABOUT SAUCE L ABS

http://saucelabs.com

